Joe Student
CET421
LAB 1: UNIX™ File Services
January 1, 1980
Due Week 16

For: Sr. Professor Wheeler

OPERATIONAL SIGN OFF

FINAL SIGN OFF

"THIS IS THE ORIGINAL WORK OF JOE STUDENT"

Oeed 10t
)

Introduction:

This project demonstrates serialization using traditional Unix-style file input
and output by creating a simple database, saving it to disk, and then
recalling it. Serialization is the process of moving objects from one place to
another. In the case of this program, they are moved from memory to disk,
and then back to memory. The program demonstrates that serialization is
not a complex process and in fact the Microsoft mechanisms are probably

— — ——————————

overkill. - ~
I CLEARLY MARK each

I

: I

- =! section of the report. I
J

i

Theory of Operation: ===

L e

The program consists of three classes, CDatabase, CDhatabaseEntry, and
CSerializer. Most of the action occurs within the code for these classes.
Each ChatabaseEntry object holds one entry of the database, and a
CDatabase object holds 100 ChatabaseEntry objects. (The value 100 is
hard-coded). The methods SetData () and Print () are used to set and print
data values for each CDatabaseEntry object.

When the program begins execution, the following activities take place:

e A CDatabase object called "db" is created.

¢ The Initialize () method of the CDatabase object is used to fill it
with dummy data.

e The contents of the database object "db" are printed using the Dump ()
method.

e The database is serialized to disk using the SerializeTo () method
in CDatabase. The SerializeTo () method relies on the Save ()
method of the CSerializer class.

e The CSerializer::Save () method automatically calls the
WriteData () method of each CDatabaseEntry object within the
database. In turn, each ChatabaseEntry object responds to this
message by calling the WriteData () method of CSerializer, which
results in the specific data for each object being written to the disk file.

e A second, blank database is created as "db2."

e Object "db2" is serialized from the disk file created from "db1."

e To verify that serialization worked, the contents are "db2" are dumped
to the screen.

Serialization is accomplished within the CSerializer helper class by using
the fread() and fwrite() library functions. For example, when a ChDatabase
object is requested to serialize itself to disk, the SerializeTo() method is
called. Within this method, the following actions take place:

e A disk file is created in binary write ("wb") mode. (This must be done
in binary mode to assure that no character translations occur, which
would interfere with the binary data being serialized).

e If file opening fails (we get back NULL for the file handle), a (-1) value
1s returned to alert the caller.

e The static Save () method of CSerializer is called, passing the open
file handle, a pointer to the array of objects to write, and the number
of objects to write (hard coded to 100 in this program.)

e CSerializer::Save () iterates through each object in the array,
sending it a message to write itself by calling the method WriteData()
that mustbe implemented by each object.

e The WriteData () method of each object calls the
CSerializer::WriteData () method as many times as needed to
write all of its data members to the stream. In this example, two data
members from each DatabaseEntry object are written, m szData
andm nSerial.

e The write file is closed.

e A test is made to see if 100 objects actually got written, as reported by
the return value of CSerializer: :Save(). If not, an error value of (-
1) is returned; otherwise, (0) is returned to indicate success.

Deserialization occurs in a similar fashion as shown in the SerializeFrom()
method:

e A disk file is created in binary read ("rb") mode. (This must be done in
binary mode to assure that no character translations occur, which
would interfere with the binary data being serialized).

e If file opening fails (we get back NULL for the file handle), a (-1) value
1s returned to alert the caller.

e The static Load() method of CSerializer is used to read 100
DatabaseEntry objects into the internal array "m pArray."

e The disk file is closed.

e The status reported by Load() is checked; if 100 objects weren't read,
an error value of (-1) is reported. Otherwise, (0) is returned to indicate
success.

Program Listings

// Database.cpp: implementation of the CDatabase class.
// Author: Student, Joe

// Version: 1.0 (January 1, 1980)
// Revision History: NONE
[T 7777770707770

YOUR NAME is
required on all listings.

#include "stdafx.h"
#include "Database.h"

[1177
// Construction/Destruction

LIPDT770770777 007777707 7770707777777777777777777777771777777777771777777

CDatabase: :Chatabase ()
{

m pArray = new CDatabaseEntry[100];

}
All functions other

than default
constructors must have
detailed header.

CDatabase: :~CDatabase ()
{

delete[] m _pArray;
}

[17177717717777

[0 77777777777777),
// Method: Initialize
// Purpose: Loads dummy data into each entry in the database for testing
// Parameters: None

// Returns: None

L1777 007 7777777777 77

void CDatabase::Initialize()
{

int 1i;

char buf[128];

for (i=0;1i<100;i++)
{
sprintf (buf, "Test data for item # %d", i+l);
m pArray[i].SetData (buf, i*i);

}
}

L1717 7700777

// Method: Dump

// Purpose: "Dumps" the entire database to the screen for inspection.
// Parameters: None

// Returns: None

L1777 700777

void CDatabase: :Dump ()
{

int i;

for (i=0;1<100; i++)
m pArray[i].Print();
}

Yy

// Method: SerializeTo

// Purpose: Writes this object to a disk or network file.

// Parameters: szFile, a character string giving the full pathname.
// Returns: 0 on success, or -1 on failure.

L1717 7 0077007077707 7 7777777777777 7 7777707 777777777777777

int CDatabase::SerializeTo(char *szFile)

{
FILE* f1;
int nResult;

fl = fopen(szFile, "wb");
if (f1 == NULL) return -1;

nResult = CSerializer::Save(fl, // Stream to serialize to

m pArray, // What to serialize
array of objects)

100); // Number of objects to
serialize

fclose (fl);
if (nResult != 100) return -1;

return 0;

}

LI rrrrr 77 7777777777777777777777777777

// Method: SerializeFrom

// Purpose: Reads this object from a disk or network file.

// Prequisite: This object must FIRST be constructed using any available
// constructor or class factory mechanism.

// Parameters: szFile, a character string giving the full pathname.

// Returns: 0 on success, or -1 on failure.

L1717 007 77771007 777
int CDatabase::SerializeFrom(char *szFile)

éILE* f1;

int nResult;

fl = fopen(szFile, "rb");

if (f1 == NULL) return -1;

nResult = CSerializer::Load(fl,m pArray,100);

fclose (fl);

if (nResult != 100) return -1;

return 0;

}

(an

L1117 7 7770077777777 77777777777777777777777717777777777777

// DatabaseEntry.cpp: implementation of the CDatabaseEntry class.
// BAuthor: Student, Joe

// Version: 1.0 (January 1, 1980)

// Revision History: NONE

LILT77 0000777000077 07 777770777777 777777777777771777777717777777

#include "stdafx.h"
#include "DatabaseEntry.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

L1770 77
// Construction/Destruction

LIPDT770770 777077777707 777777777777777777777777777771777777777771777777

CDatabaseEntry: :CDatabaseEntry ()
{

m _nSerial = 0;

m_szData[0]=0;

}

CDhatabaseEntry: :~CDatabaseEntry ()
{

}

CDatabaseEntry::CDatabaseEntry (char * name, int x)
{

m nSerial = x;

strcpy (m _szData, name);

}

LI rr 777 7777777777777777777777777777
// Method: Print

// Purpose: Prints the object's contents to the screen

// Parameters: None

// Returns: None

N N NN

void CDatabaseEntry::Print ()
{
printf ("ID: %d\nName: $s\n", m nSerial, m szData);

}

Ny

// Method: SetData

// Purpose: Sets the data fields of this object to the specified values.
// Parameters: szName, "Name" field value; nID, "serial number" value

// Returns: None

N N NN

void CDatabaseEntry::SetData (char *szName, int nID)
{

strcpy (m szData, szName);

m _nSerial = nID;

}

L1777 077 7777707 777
//

// ReadData ()

//

// Function: This method calls the method of the parent class to
// read particular object data from the specified stream.

//

// The implementor of this method MUST specify the specific data
// members of the object that are to be serialized by adding

// calls to CSerializer::ReadData() for each member, as shown below.
//

// Returns: 1 on success, 0 on error.

//

L1717 7 0077777077777 777777777777777777717777771777777177777

int CDatabaseEntry::ReadData (FILE *hStream)
{

if (0O==CSerializer::ReadData (hStream,&m nSerial,sizeof (m nSerial))
return 0;

if (0O==CSerializer::ReadData (hStream,m szData,sizeof (m szData)))
return 0;
else
return 1; // success

}

L1777 000 7777007777 7777 7777777777 777777777777777777777777777777
//

// WriteData ()

//

// Function: This method calls the method of the parent class to
// write particular object data to the specified stream.

//

// The implementor of this method MUST specify the specific data
// members of the object that are to be serialized by adding

// calls to CSerializer::WriteData() for each member, as shown below.
//

// Returns: 1 on success, 0 on error.

//

L1717 7070077777077 777777 777777777777777777777777771777777177777

int CDatabaseEntry::WriteData (FILE *hStream)
{

if (0==Cserializer::WriteData (hStream,&m nSerial,sizeof (m_nSerial))
return 0;

if (0==Cserializer::WriteData(hStream,m szData,sizeof (m _szData)))
return 0;
else
return 1; // success

Conclusion

Serialization using conventional UNIX file I/O methods is very easy and
reliable. However, there are several issues with this particular program:

e It always dumps 100 objects to disk, regardless of how many actually
contain data. This 1s wasteful of disk space.

e There's nothing in each serialization stream that specifies how many
objects are being written, or the version of each object. To properly
implement a variable document size, additional information would
need to be included in the file header to specify how much was being
written in each file, along with versioning information.

e The CSerializer mechanism used requires that some serialization
code be embedded into each type of serializable object. There's no
mechanism for object introspection in C++, so there's no simple way
around this issue.

