ECT-215 Homework #1 Solution Set

Chapter 14 Problems 1-29

Scoring: 1 point per problem, 29 points total.

1. For the system of figure 14-1, give the binary code output that will result for each of the following voltages: 3V; 3.7V; 6V; 6.2V.

When Vin = 3V, $CBA = \{011\}$

When Vin = 3.7V, $CBA = \{100\}$ (Same as code for 4V)

When Vin = 6V, $CBA = \{110\}$

When Vin = 6.2V, $CBA = \{110\}$ (Same as code for 6V)

2. What is meant by the term quantization?

Quantization is the reduction of information with an infinite number of possible values (like a voltage) into something with a *finite* (countable) number of values.

3. A certain digital system uses 5 bits per sample. How many voltages can it represent?

The system can represent 2⁵ or <u>32 different voltages</u>.

4. Draw a block diagram of a complete data communications system, and using outline form, explain the function of each part.

Digital Data on Analog Carrier Signal

[Figure 14-2]

Function of components of problem 4:

- A. Transmitter operation
 - 1. Parallel data from source converted to serial.
 - 2. Serial data converted to analog (if needed) for transmission by modulator.
- B. Receiver operation
 - 1. Incoming analog data converted back to digital by demodulator.
 - 2. Deserializer converts serial data back to parallel.
- 5. Explain the difference between serial and parallel data. Give a non-electronic example to illustrate.

In <u>parallel data</u>, all data bits are sent at once. With serial data, one data bit is sent at a time. A good everyday example is cars moving on a road; a multi-lane road can support the equivalent of parallel data transfer.

6. What must be done in order to pass digital information through an analog medium (such as a telephone line)?

The information must be converted into an analog form to be passed through an analog medium.

7. A data waveform has a bit time T_b of 1 μ S. Calculate the data rate of this waveform.

$$bps = \frac{1}{T_b} = \frac{1}{1\mu S} = \underline{\frac{1Mb/s}{}}$$

8. In order to simulate a "1010. . ." serial data pattern at 4800 bps, what frequency square wave must be used?

$$f_{sim} = \frac{bps}{2} = \frac{4800bps}{2} = \frac{2400Hz}{2}$$

9. Define the terms simplex, half duplex, and full duplex. Which mode usually requires the most bandwidth?

Simplex: Communications occurs in only one direction.

Half Duplex: Communications occurs in two directions, but only one at a time.

Full Duplex: Communications in both directions at the same time.

Full duplex communications usually requires the most bandwidth.

10. Draw a diagram of a point-to-point, multi-drop, ring, and star network. Which of these has the highest reliability?

Point to point: [Figure 14-5]

Multi-drop: [Figure 14-6]

Ring: [Figure 14-8]

The star network has the best reliability of all the networks listed.

11. Define the term protocol.

A protocol is a set of rules for communication.

- 12. Using outline form, explain how a message is originated and delivered on a ring network.
 - A. Unit waits for token which is equal to permission to send.
 - B. Transmitting unit stores token and releases message frame.
 - C. Message frame circulates network and is marked received by recipient, then retransmitted.
 - D. Originator gets message back, checks status bits.
 - 1. If receiver got message OK, token is released back onto network to allow other units to transmit.

13. What does CSMA/CD stand for? Summarize the operation of units on a CSMA/CD network in one sentence.

CSMA/CD stands for Carrier Sense Multiple Access with Collision Detect. The operation can be summarized as "listen before you speak."

14. Draw a block diagram of a telephone modem. For each signal in your diagram, show whether it is analog or digital.

[Figure 14-11]

15. What is the frequency response of a standard dial-up telephone line?

A standard dial-up line responds from 300 Hz to 3 KHz.

- 16. What will happen when the following signals are passed into a telephone line?
 - a) A 1000 Hz Sine wave
- b) A 2.5 KHz square wave
- c) A 4000 Hz Sine wave
- a) The 1000 Hz sine wave passes to the other end unchanged.
- b) A 2.5 KHz sine wave appears at the other end, since only the 2.5 KHz fundamental can pass down the line.
- c) There is no output at the other end, as 4000 Hz is above the upper frequency limit.
- 17. What is meant by the terms mark and space?

Mark means a logic "1," and space means a logic "0."

18. Draw a spectrogram showing the frequencies transmitted by originate and answer modems according to the Bell 103 standard.

[Figure 14-15]

19. Define the term BAUD. How are BAUD and bps different?

BAUD is the rate at which changes are made on an analog carrier wave. It is quite different than *data rate*, which is measured in *bits per second*, or *bps*. Units of *bps* essentially describe a digital quantity, while *BAUD* describes an analog quantity.

20. What is a single-level modulation system?

A single-level modulation system represents one bit of data for each transition (change) in the analog modulated waveform.

21. A 4800 bps data waveform is being sent into a FSK modulator. What bandwidth will the resulting signal need?

Since FSK is a single-level system, the BAUD is equal to the data rate:

$$BW_{FSK} \approx 5BAUD \approx 5(4800BAUD) \approx 24KHz$$

22. A certain communication channel has a 2 KHz bandwidth. What is the maximum signaling rate and data possible if single-level FSK is used?

$$BW_{FSK} \approx 5BAUD \Rightarrow BAUD_{max} \approx \frac{BW}{5} \approx \frac{2KHz}{5} \approx \frac{400BAUD}{5}$$

Because FSK is a single-level system, the data rate will be equal to the signalling rate at $400\ BPS$.

23. What is a multi-level modulation system? What is the advantage of a multi-level system over a single-level system?

A multi-level modulation system encodes more than 1 bit per transition. The advantage of these systems is higher speed.

24. A certain multi-level modulation system encodes 3 bits per transition, and operates at 600 BAUD. What is the actual data rate?

$$bps = m \times BAUD = (3)(600BAUD) = 1800bps$$

25. What factor limits the number of bits per transition in multi-level systems?

The $\underline{\text{signal to noise ratio}}$ (SNR) of the communications channel limits the number of bits per transition.

26. What two factors limit the data carrying capacity of a communications channel?

The two factors that limit channel capacity are the SNR ratio and bandwidth.

27. Explain why PSK is much more popular than FSK for modern high-speed modems.

PSK is much easier to generate and demodulate, and uses bandwidth much more efficiently than FSK.

28. Draw a signal constellation diagram for a single-level (binary) PSK system. How many modulation states does it have?

[Partial of Figure 14-18]

This constellation has 2 modulation states.

29. In order for a PSK modulator to encode 5 bits per transition, how many phase angles must it have?

The constellation needs 2^5 or $\underline{32}$ distinct phase angles.