
EET-387 Embedded Microprocessor Systems
Behavioral Descriptions for Labs

Sr. Professor Wheeler

Lab 1: Aircraft Fault Display

1.0 Inputs

Eight (8) SPST switches are to be used as inputs. When each switch is closed, no fault is
indicated. 5 volt CMOS logic levels are to be employed.

1.0.1 Input Enumeration

The faults are enumerated (in decreasing order of severity) as follows:

8: Right Engine 7: Left Engine
6: Hydraulic Pressure Low 5: Low Fuel
4: Gear Unlocked 3: Slats Disagree
2: Cabin Pressure Low 1: Landing Lights Fault

Code (0) is used to indicate no fault. The inputs must be designed such that if a harness
wire fails open, the fault condition is indicated.

1.1 Output

The output is to be a single seven-segment LED.

1.2 Processing and Data Flow

1.2.1 Power On Self Test

When the system is powered up, it will count from 1 to 8 to test the LED display. It will
then revert to fault detection mode.

1.2.2 Fault Detection Mode

In this mode the system will continually scan the fault input lines:

a) When no fault is present, the numeral "0" will be continuously displayed.

b) When any faults are present, the system will display the faults in sequence,
 starting with the most severe. Each fault will be displayed according to the
 numeric codes in section 1.0. Each fault should be displayed for 1 s, followed
 by a blank display for 0.5 s, followed by the next code (if any).

c) When faults are corrected, they must be automatically removed from the
 display sequence.

Lab 2 LCD Display

1.0 Inputs

Eight (8) SPST switches are to be used as inputs. When each switch is closed, no fault is
indicated. 5 volt CMOS logic levels are to be employed.

1.0.1 Input Enumeration

The faults are enumerated (in decreasing order of severity) as follows:

8: Right Engine 7: Left Engine
6: Hydraulic Pressure Low 5: Low Fuel
4: Gear Unlocked 3: Slats Disagree
2: Cabin Pressure Low 1: Landing Lights Fault

Code (0) is used to indicate no fault. The inputs must be designed such that if a harness
wire fails open, the fault condition is indicated.

1.1 Output

The output is to be in two forms:

a) A generic 16 character by two-line LCD.
b) Two LEDs, green for no fault and red for failure. These LEDs are to be mutually
 exclusive.

1.2 Processing and Data Flow

1.2.1 Power On Self Test

When the system is powered up, it will count display "Fault Warning Self-Test" and
alternately flash the green and red LEDs for two seconds to test them.

1.2.2 Fault Detection Mode

In this mode the system will continually scan the fault input lines:

a) When no fault is present, the green LED will be lit continuously and the text
 "All Systems Normal" is to be displayed.

b) When any faults are present, the system will display the faults in sequence,
 starting with the most severe. The red LED will be illuminated and the green
 LED will be extinguished. Each fault will be displayed according to the
 verbose codes in section 1.0. The text "Failure," followed by a flashing verbose
 description, will be displayed for each fault. Each fault should be displayed for 1 s,
 followed by a blank display for 0.5 s, followed by the next fault (if any).

c) When faults are corrected, they must be automatically removed from the
 display sequence. When all faults are corrected, the system should return to state
 1.2.2(a).

Lab 3 Keyboard Interfacing

Objectives:

• Interface the keypad to the microcontroller using your own choice of port pins (you

will need five input port pins if you use the 74HC922 keyboard scan IC). Please refer
to the data sheet for this part.

• Create general-purpose I/O routines for getting ASCII and numeric data from the
keyboard so that a user interface can be created.

• Define the behavioral specifications for a simple application demonstrating the
functionality of the keyboard and LCD.

Instructions:

In this experiment you will be defining what you would like the microcontroller to do. This
can be almost anything -- even a simple game or simulation is fine. The objective is to get
high-level routines for the keyboard and LCD display working together. These high-level
routines will form the basis for more complex applications with the microcontroller.

Note that you must pay careful attention when writing these routines to ensure that they
are robust. Watch C pointers, in particular, and don't allow them to write past the end of
arrays, or you'll be pulling out your hair debugging. Use boundary checking for user input so
that your program doesn't lock up or fail when the user makes incorrect entries.

You may find it helpful to implement the following C functions, or at least something like
them.

// global input buffer to be held in SRAM
char input_buffer[32];

// Scan the keyboard, returning an 74HC922 scan code (or -1 if no key pressed)
int scan_key();
// Scan the keyboard, returning (-1) if no new key pressed, or the new 74HC922 key code
char getkey();
// Scan the keyboard; if a new key is pressed, return the ASCII key code, or 0 (NUL) if

none.
char getkey_ASCII();
// Scan the keyboard; if no keys pressed, wait until is one is pressed, then return the

ASCII
// keycode.
char waitkey_ASCII();
// Input a string from the user into the INPUT_BUFFER while displaying a szPROMPT
// on the LCD.
int inputStringWithPrompt(char flash* szPrompt,int nMaxLen);
// Input an integer from the user, while displaying szPROMPT
int inputIntegerWithPrompt(char flash* szPrompt);

Remember that developing working input routines is the goal of this lab. This is not always
an easy task, but it is a very important one. Remember to write and test one short section of
code at a time. Allow yourself plenty of time to understand and complete this lab!

Lab 4 Analog to Digital Conversion (Temperature Lab)

1.0 Inputs

One LM34 temperature measurement IC is to be used to read the ambient temperature.
The ambient temperature will not be allowed to exceed 240 degrees F.

1.1 Output

The output is to be in two forms:

a) A generic 16 character by two-line LCD.
b) A 12 volt DC fan. When the temperature is too high, the fan will be activated.

1.2 Processing and Data Flow

1.2.1 Temperature Display

The system will continually display to the nearest 0.1 degree, the sensor temperature in
both Fahrenheit and Celsius. The top line of the display is to be used for this purpose.
The display will be updated in a flicker-free manner from two to four times per second.

The temperature is always displayed regardless of the fault condition (or lack thereof).

1.2.2 Fault Indication

When the ambient temperature is below 78.0 F, the display will show "Temperature OK"
on the bottom line.

When the temperature is 78.0 F or higher, the display will show "High temp" on the
bottom line. The DC fan motor will be turned on, and 3 degrees F of hysteresis will be
provided such that the fan motor will remain on until the ambient temperature falls
below 75.0 F.

1.3 Option 1

The user may optionally be allowed to program the temperature limit and hysteresis. The
programming mode is entered by pressing or holding a specified key during normal
operation of the instrument.

The user interface of the programming mode is specified by the student.

Lab 5 UART Communications

Lab 5 is an extension of the ADC lab (Lab 4), so all I/O specifications from Lab 4 apply to
this design.

This design will allow a personal computer to retrieve the temperature data. No data will be
required from the PC in order to initiate the communications -- the data flow will be purely
simplex.

The revised output specification is as follows:

1.1 Output

The output is to be in three forms:

a) A generic 16 character by two-line LCD.
b) A 12 volt DC fan. When the temperature is too high, the fan will be activated.
c) An RS232D serial interface supporting the RxData line for direct transmission
 of data to a personal computer. The data will be sent using the parameters:
 9600 bps, 8,N,1.

1.2 Input

In addition to the input types supported in Lab 4, the following input will be
supported:

a) RS232D TxData line for reception of command data from the attached personal
 computer.

b) The RS232 RTS, RLSD, and DCE READY signals will be hard-wired to the "on"
 or "asserted" condition regardless of the communications state.

The display specification is revised with the addition of the following section:

1.3 Serial Data Echo

About once per second the system will output a status indication to the personal
computer. The status indication will include the fan on/off status, the current
temperature to the nearest 0.1 degree F, and the upper temperature limit.

When the temperature is normal and the fan is off, the status message "Temperature
Normal" will be included in the status message.

When the temperature is above the limit, the status message "High Temperature" will be
included. If the temperature has been above the limit and has fallen below the limit (but
the cooling fan is still on, due to hysteresis), the status message "Cooling down" may also
be appended.

1.4 Remote Command Capability

The system will continually check the RxData line for incoming command information
from the PC.

It is recommended that the RETURN character ('\r' , 0xd) be used to activate a menu
system that will allow the user to remotely configure the temperature limit and hysteresis
from the personal computer. Any other character should be ignored to prevent menu
activation by spurious noise or characters.

All inputs to the menu system must be bounds-checked, and if no input is received within
approximately 20 seconds, the menu should automatically exit and allow the system to
continue running again.

	Lab 1: Aircraft Fault Display
	Lab 2 LCD Display
	Lab 3 Keyboard Interfacing
	Lab 4 Analog to Digital Conversion (Temperature Lab)
	Lab 5 UART Communications

