CET-421 Homeworks

Sr. Professor Wheeler

Instructions: Your homework must be turned in within a flat 3-tab paper folder (no three-ring binders will be accepted). Answers must be computer generated -- no handwriting allowed. Use complete sentences when answering all questions.

Homework 1

1. List at least four functions of a modern operating system, and explain why each one is necessary.

2. Why do modern operating systems typically prohibit user programs from interacting directly with hardware?

3. Explain the purpose of each Win32 component:
a) Kernel
b) Executive
c) Win32 Environmental Subsystem

4. What is the relationship between processes and threads? Give an example to support your explanation.

5. Explain the difference between kernal mode and user mode execution of software.

6. What is the purpose of HAL? What language is the HAL written in and why?

7. Briefly describe the Windows 2000 / XP boot process. List each major component that is loaded, and how it interacts with the system.

8. Draw a block diagram of the major Windows 2000 / XP components that are present at runtime, and show how they are related to each other.

9. Compare and contrast Win32 operating systems with Unix/Linux systems. In particular, explore:
a) How do these operating systems map disk drives and devices?
b) Are they both multitasking? Multithreaded?
c) How do they handle network services?

(Homework #1 is continued on the next page)

10. Log into a Linux operating system and explore the filesystem.

a) Linux is available on all computers in Lab 138. Boot the system and choose the
 correct operating system when the selection screen appears.

b) Login as "student" with a password of "kcdevry". This is case-sensitive.

c) Using the available file browser (probably Konquer or Nautilus, depending on what
 desktop is installed), navigate to the root of the filesystem. PRINT THIS SCREEN (or
 if this isn't possible, list the top-level folders that appear in the directory tree.)

d) See if you can view the contents of a floppy disk. Insert a floppy into the
 machine, and under GNOME ("guh-nome") right-click the desktop and choose
 "Disks...Floppy." The contents should show up in the folder /mnt/floppy. (Note:
 This procedure may vary depending on the desktop installed in the lab.)

e) BONUS: Linux can mount Windows filesystems and view them. See if you can
 figure out the correct syntax for the mount command to mount one of the existing
 Windows partitions into the Linux filesystem. (Hint: the partial command is "mount
 -t NTFS "). Use man mount to learn more about the mount command.)

Homework 2

1. Compare and contrast the following file systems, make sure to give the cluster size (in kBytes), maximum number of clusters, and maximum volume size for each one.

a) FAT

b) FAT16

b) FAT32

2. What are journaling file systems, and how do they differ from the systems in question 1?

3. Compare and contrast the Microsoft NTFS and Linux EXT3 filesystems. Describe their security measures, journaling method, and volume capacities.

4. Describe the process of volume striping. How is it helpful?

5. What is RAID? How does it improve the reliability of a storage system? Explain the difference between a software and hardware RAID.

Homework 3

1. List the five primary keys in the Windows registry, giving the purpose of each one.

2. Explain the following registry data types, giving an example of each one:

a) REG_BINARY
b) REG_DWORD
c) REG_SZ
d) REG_MULTI_SZ
e) REG_EXPAND_SZ

3. What is a hive? Give the filenames of the registry hives for the following trees:

a) HKEY_LOCAL_MACHINE\SAM
b) HKEY_LOCAL_MACHINE\Security
c) HKEY_LOCAL_MACHINE\Software
d) HKEY_LOCAL_MACHINE\System
e) HKEY_CURRENT_CONFIG
f) HKEY_USERS_DEFAULT
g) HKEY_CURRENT_USER

4. What is the purpose of the following registry features? Explain how they interact when changes are made.

a) Memory-resident portion
b) Log

Homework 4

1. Explain the difference between a thread and a process in your own words.

2. Normally Win32 applications use the apartment model for threading. Explain what this means.

3. List the four possible states for a thread in a Win32 application. Explain how the thread would arrive in each state, and what the next possible state(s) would be.

4. When passing a local (or other temporary) variable to a newly-started thread, is there any danger involved? Explain.

5. Explain the meaning of the keyword "volatile" when used with a variable under Visual C++. Use the MSDN online documentation and other resources as needed. Why is this declaration sometimes required?

6. What three purposes is the machine stack used for when executing C/C++ programs?

7. Explain how to control the stack size of a thread when using the API function "CreateThread()."

8. Calculate the amount of stack space (in bytes) needed by the following function. The API function Sleep() requires 16 bytes of stack space; integers and return addresses are 32 bits, doubles are 64 bits. Show all work using a table.

void MyFunction(int nValue)
{
static double dTrouble = 5.0; // D'oh!

int i
for(i=0;i<nValue;i++)
 {
 Sleep(100); // Sleep for 100 mS
 dTrouble++;
 }
}

9. How does the API call family "_spawn()" differ from "CreateThread()?"

10. Write a _spawn() family call that calls the program "superpad.exe" and passes it two command line arguments, "value1.txt" and "value2.cfg." Use the correct version of the call (refer to the MSDN documentation). In particular:

* The current thread should block while "superpad.exe" is executing.
* The program "superpad.exe" is located in an unknown file location, but it is in the path.
* The environment string need not be passed to the child process.

Homework 5

1. Define the term "synchronization" as it applies to computer software in your own words.

2. List and briefly explain each of the three synchronization methods available under Win32.

3. Define the term "deadlock" and give an example of where this problem could occur within an application.

4. Explain the purpose of each of the following API calls in your own words:

a) CreateEvent()

b) OpenEvent()

c) SetEvent()
d) ResetEvent()

e) WaitForSingleObject()
5. Explain each of the three API calls used for managing critical sections.

6. Write a short (no more than 50 lines) C++ program demonstrating a critical section.

7. Explain how to implement a monitor employing a Mutex.

8. The StackDemo project from class implemented a thread-safe stack. The Pop() method implemented in this project returns <NULL> when the stack is empty. Sometimes that isn't acceptable. Add a method called void* PopWait(void* lpObject, int nSize, int nTimeout) that will behave cooperatively:

a) If an object is available on the stack, pop it off immediately and return a pointer
 to the object, just like Pop() does.
b) If an object is not available (the stack size is zero), WAIT for the maximum time
 period specified by nTimeout, in ms), blocking the calling thread.
 1) If the object becomes available within the specified time, pop it and return
 a pointer to it just like in (a).
 2) If the object does not become available, return <NULL> to signify timeout.

YOU WILL NEED TO ADD A SIGNALED EVENT TO THE STACK CLASS AND MODIFY THE PUSH() METHOD TO COMPLETE THIS PROBLEM.

Homework 6

Homework 7

