

DDeeVVRRYY UUNNIIVVEERRSSIITTYY

Course Supplement Fall 2006

Course Title: Operating Systems and Interfacing With Lab
Course number: CET421
Credit/Contact hour: 4-2-5
Course Dependency: Prerequisite: CET375

Required Co-requisite: (none)
Instructor:
FTP Site: ftp://n0gsg.no-ip.org

Note: Examples developed in class can be accessed here.

 Tom Wheeler
twheeler@kc.devry.edu
816.941.0430 x5211

Description

See the CET421 syllabus for the description of this course. This document serves to document
the laboratory exercises that are a portion of this course, as well as the policies that will be
applied to the laboratory work.

Required Text: Win32 System Services 3/e, Brain & Reeves; Prentice Hall

Schedule of Experiments

Number Description Due Week #

1 Win32 File Services 3

2 Registry APIs 5

3 Multithreaded Applications 7

4 Synchronization: Events 9

5 Deadlock, Mutexes, and the Dining Philosopher's
Problem

11

6 Interprocess Communications by File Mapping 13

7 Win32 Services 14

CET421 Laboratory Supplement (Wheeler) Page 1 of 10

Laboratory Procedures

Students in the laboratory portion of CET421 will work individually. Reports must consist of the
following parts (please pay attention to order):

All portions of the lab reports for CET421 (with the exception of raw data, which may be included
in an appendix at the writer’s discretion) must be created electronically. No hand written work
is acceptable. Use the equation editor in Word (Insert -> Object -> Microsoft Equation 3.0) to
type equations and formulas. Captured waveform data must be contained within the document
file.

REPORT CONTENTS

1) COVER PAGE contains:

 a) Your name
 b) Your class and section (CET421 8DA)
 c) Experiment Title
 d) For: SR. PROFESSOR WHEELER
 e) Due Date of report (Week # or date given in class)
 f) Operational sign-off blank
 g) Final sign-off blank.

2) INTRODUCTION - This will be a written explanation of what the experiment is designed to do

(and what is expected as a learning outcome).

3) THEORY OF OPERATION – This will be a walk-through of the code written to complete the
requirements of the project. Do not document each line of code! Instead, document each
major activity your program takes as it completes its task.

4) PROGRAM LISTING – This will be a complete listing of the program. If you're writing MFC
code, you can omit the code for your main window class (unless it is critical to
understanding how the program works). All code must be properly commented: All
methods/functions must have a comment header giving the method name, purpose,
parameter list, return value, and a description of each parameter and return item value.

 4) CONCLUSION – A written explanation of what can be concluded from the activities of the
experiment. It must be based on the data collected, and it may also comment on topics
such as the efficiency/effectiveness of various software methods used to achieve the
experimental goals.

See the document "labex" (on the CET421 web page) for an example of expected writing practices.

Important: Remember that you are to be the author of all laboratory work; refer to the DeVry
Academic Integrity policy in the course syllabus, and the student handbook. The laboratory
reports are to be written by you. Do not just copy or paraphrase the text from the laboratory
instructions, or laboratory example. Do not share your writing with other students. Do not
"loan" your writing to a fellow student to "help" them write a report. The written analysis must
reflect your ideas and interpretations.

CET421 Laboratory Supplement (Wheeler) Page 2 of 10

Report Grading Criteria

The documentation for CET421 reports is evaluated by the following criteria:

• Mechanics - Correctness of spelling, punctuation, and grammar.
• Organization - Presentation of ideas in a logical order.
• Clarity - Minimization of the reader’s workload.
• Appearance - Neatness and visual appeal of the work.

Reports are evaluated holistically. In this method, individual points are not added or subtracted
to obtain a score. Instead, the report is compared to these criterion:

The A paper consists of the following:

Central Idea:

• Is clearly expressed, responds to the assignment, provides focus.
• Is explicitly and logically supported with concrete details and examples.

Structure:
• A plan of organization is given in which ideas are arranged in a clear, logical order.
• Ideas are clearly connected.

Development:
• Generalizations are supported or explained with concrete details.
• Smooth transitions are used between sentences and paragraphs.

Style:
• Varied sentence length and structure.
• Consistent and appropriate tone.

Mechanics:
• Grammar, punctuation, capitalization, spelling are correct.

A B paper consists of the following:

Central Idea:

• Is clearly expressed, responds to the assignment, provides focus.
• Is explicitly and logically supported with concrete details and examples.

Development:
• Concrete details usually given to support ideas.
• Transitions are given in most instances where needed.

Style:
• Contains some variation of sentence length and structure.
• Tone is consistent throughout.

Mechanics:
• No more than eight mechanical errors.

CET421 Laboratory Supplement (Wheeler) Page 3 of 10

A C paper consists of the following:

Central Idea:
• May be slightly askew, but seems to be somewhat clear.

Structure:

• A clear construction is attempted, but does not measure up consistently, and ideas are
usually connected via transitions.

Development:
• Writer has attempted to give enough information to support his/her ideas, but there are

"holes" where the reader may be uncertain.
Style:

• The writer has attempted a few times to vary sentence length and structure, and tone
shifts often.

Mechanics:
• No more than 10 mechanical errors.

A D paper consists of the following:

Central Idea:

• Is somewhat unclear, but is stated.
Structure:

• The ideas are somewhat "rambling" in nature, and few transitions are given.
Development:

• Many ideas have little concrete information for their support. Thus, they often fade into
mere opinion rather than rather than expressing "facts."

• Few transitions are given.
Style:

• Leaves the reader feeling unsure of the writer's own attitude toward the topic.
Mechanics:

• Has more than 15 grammar, punctuation, spelling errors.

An F paper consists of the following:

Central idea is missing, and writing wanders from topic to topic without a clear focus.

Structure -- no clear structure -- becomes a jumble of ideas without a stated reason given for why

it was written.

Development -- very little development or support given for any discernable ideas.

Mechanics -- writer evidences very little basic understanding of grammar, punctuation, or
spelling skills. Many errors of each kind.

CET421 Laboratory Supplement (Wheeler) Page 4 of 10

Experiment Descriptions:

Lab 1: Win32 File Services

This experiment is designed to familiarize you with Win32 file services. Proceed as follows:

1. Download the project files from

ftp://n0gsg.no-ip.org/CET421/Fall2005/SerializationTest/ into a folder on your
computer. (Don't worry about copying the Debug folder.)

2. Read Chapter 2 of the Brain & Reevse text. It covers the Win32 file services you need.

3. Convert the application to Win32 file services. Tip: You need to use CreateFile() for both

reading and writing files. Do not use OpenFile(); this method is deprecated!

TIP: Don't forget to include <windows.h> where needed!

4. If you have time, enhance the application (provide file integrity checking, operational menu,

and so on).

Lab 2: Registry APIs

This experiment will demonstrate how to manipulate system registry from software. Your
program will create a shell association for a fictitious content-type called "wheelerjunk" contained
in files with the extension "999."

1. Read the handout and using Regedit, study the structures found under

HKEY_CLASSES_ROOT to gain understanding. (For example, look at how files with the
extension "txt" are mapped to the notepad application).

2. Using the system registry APIs, write a program called "associate.exe" that will associate an

application located at c:\mine.exe with the file extension "999."

3. Create a console application called "mine.exe" that types a text file to the screen. The filename

is passed on the command line, as in:

mine test.999

TIP: The parameters passed to main, argc and argv[], contain the count of command line
items and a pointer to each command line item.

Store this application at the root folder of drive C: so that it will be consistent with the
registry entries created in step 2.

4. Create a test text file called "test.999" (using notepad); save this file to disk (NOT the desktop,

however). Then run "associate.exe" to set up the registry. Double-clicking "test.999" from
Explorer should cause the program "mine.exe" to run and display the text data.

TIP: Before writing a single line of code, use Regedit to manually manipulate the system registry
and create the desired actions.

CET421 Laboratory Supplement (Wheeler) Page 5 of 10

Lab 3: Multithreaded Applications

This experiment will demonstrate the power of multithreaded applications. It will perform
counting as a background task while allowing other activities to take place.

1. Using Visual C (Studio or .NET), create a dialog application that looks like this:

NOTE: Be sure you set the edit window to multiline, vertical scroll style.

2. Add threaded code that will cause a count to be accumulated in the edit window once per

second once the Start Counter button has been pressed. When the Stop Counter button is
pressed, the subthread is to terminate, again leaving the program in an idle state.

Note: For the subthread to trigger an event in the dialog, it will need a pointer variable
passed to the dialog object. Pass this as the parameter to the AfxBeginThread() method.

Tip: Your thread procedure must have the prototype:

UINT mythreadproc(LPVOID lpOwner);

The name of the thread procedure is unimportant, however, the parameter types must match.

3. Include logic to prevent a mishap in case the Start Counter button is depressed multiple times.

4. If you have time, increase the subthread functionality. For example, you might have it

interpret the edit box contents as a list of numbers to be summed (one per line), with the
subthread appending the sum at the bottom of the box (this will result in an interesting
display of "magic" numbers.)

CET421 Laboratory Supplement (Wheeler) Page 6 of 10

Lab 4: Events

Events are often used to synchronize the operation of two (or more) processes. In this experiment
you'll create an MFC-based program that is synchronized to the timer event in project #3. Two
different processes will be synchronized using an event object. One process (your lab project #3)
will be the source of the event triggers, and the second process will look for the trigger events to
take place, time them, and report them.

Modification needed for project #3:

Modify project #3 to create an Event object called "metclick" using the API method
CreateEvent(). Be sure to give the event a name so that the second process can open it! When
each count is accumulated in the window, use a Windows API call to set this event to a signaled
state.

Program behavior:

The program will display a dialog box much like the one shown below. It will then start a new
subthread that waits for the event "metclick" to go into the signaled state.

Use the OpenEvent() API call to open the "metclick" event. If the event doesn't exist, report the
condition and give the user the option of continuing (again trying to open the event) or aborting
(terminating the dialog). When the event becomes signaled, the subthread will cause the main
dialog to report how long it took for the event to occur. The subthread will then wait for the next
"metclick" event to take place.

The subthread must exit cleanly when the dialog is dismissed (use a completion flag variable as
you did with project 3), and it must not wait indefinitely for the event to fire. It is suggested to
use a waiting timeout period of no more than one second. Override the OnDestroy() method of
CDialog to notify the thread when it should terminate.

In order to accumulate the time interval, you may use API calls to learn the system time, or you
may simply accumulate the sum of timeout interval periods.

CET421 Laboratory Supplement (Wheeler) Page 7 of 10

Lab 5: Deadlock, Mutexes, and the Dining Philosopher's Problem

You've seen how a mutex can be used as a monitor for a data object. This monitor can be used to
control access to the object by any number of threads. What happens if more than one thread
attempts to enter a mutex-controlled monitor? You know that only one thread may possess a
monitor at any time, so the other threads must wait for the active thread to exit the monitor. Of
course, the waiting threads don't get any work done during this time!

What if a waiting thread never acquires the monitor? This thread will appear to be frozen, or
deadlocked. This is a very common problem in multithreaded applications. In this experiment
you will experiment with the existing code in the textbook that demonstrates the classical
"Dining Philosophers Problem."

The objectives of this experiment are twofold:

• You will directly observe the effect of deadlock on a multithreaded program.
• You will implement, compare, and document at least two different solutions to the

deadlock. The comparison will be quantitative.

Suggested Procedure:

1. Read Section 7.3 of the textbook (starting on page 193) to learn the background information.

In particular, study Listings 7.10 and 7.11.

2. Enter and debug the program of Listing 7.10. Once you've got it running, set

"numPhilosophers" to ten (10). Comment this listing completely.

3. Document the performance of this code. A good quantitative measure of "how good" the

program is working is to calculate the average percentage of philosophers that get to eat at
any particular time. (This directly correlates to throughput for each thread). You may find
another measure that's even better; if so, use it!

TIP: One excellent way of documenting performance is to write all the screen data to a file,
then create a short C++ program to analyze the file content.

4. Apply the modifications of Listing 7.11. Use the same measure as in Step 3 to measure the

performance. How much improvement was attained? Show all calculations, formulas, and
results clearly in your report.

5. Try implementing another deadlock-breaking method (search the web for background). Again,

document the performance attained with this method, showing all calculations, formulas, and
results.

Report Tips:

1. Include a thorough discussion of how the program works. Discuss all modifications made to

the software.

2. Make sure to include the quantitative measurements you've made.

3. After doing all of this, don't forget to draw conclusions about what you've done and observed!

CET421 Laboratory Supplement (Wheeler) Page 8 of 10

Lab 6: Interprocess Communications by File Mapping

Sometimes we need to send data between multiple threads and applications. You've seen that it's
quite easy to communicate between threads in a single application; because Windows uses the
apartment model for threading, the main process has access to all the memory allocated to each
subthread. However, what if two different applications need to communicate? Windows provides
several mechanisms:

• File Mapping
• Mailslots
• Named Pipes
• TCP/IP Communications

File mapping is the easiest of these to achieve. The concept is simple: A disk file (or virtual disk
file) is mapped into a character array by the operating system. For a process to access the file, it
merely asks the operating system to map the array to the disk file; thereafter, whenever the
process writes to the array, the operating system automatically updates the file and any other
mapped memory spaces in the system.

In this experiment you'll use file mapping to communicate between two processes. You'll create
two different programs to do this.

The first program will be the sender of the data. It will ask the user to enter a message one line
at a time. Each line of the message will be transmitted to any waiting application through a
mapped file of your choice. The sender will need to fire an event to let the receiver know that the
mapped file contents need to be read.

The second program will be the receiver of the data. It will merely wait for the event fired from
the first program; when this event is received, it will read and display the data using the mapped
file.

The second program should exit cleanly when the text "Bye" is typed into the first. It will also
exit cleanly when no text has been received for 30 seconds. Use the timeout feature of the event
system to accurately time the 30 second interval.

These programs can be built as either MFC GUIs or command-line applications.

CET421 Laboratory Supplement (Wheeler) Page 9 of 10

Lab 7: Services

In this experiment you will build a simple Win32 service. There is no report required for this lab!

Your program will perform the following actions:

• It will sleep for ten seconds (use ten one-second Sleep() calls to make sure that the
thread can exit cleanly in a reasonable time period.)

• Upon awakening, it will beep once, and transmit a UDP datagram to the flood broadcast
address "255.255.255.255" on the LAN. This datagram will contain your full name in
ASCII text, terminated with a zero '\0' byte.

• It will then repeat the process above indefinitely.

Your program must implement all the normal commands expected of the Handler() function for
a Win32 service, and must exit cleanly when the service is stopped from the services control
panel.

Sign Off

The instructor will give you a sign off for the lab when your broadcast packet is detected on the
LAN. At this point, you will demonstrate that your service responds correctly to all commands
from the services control panel.

Design Tips

• Be sure to link to "ws2_32.lib" and include <winsock2.h> in your project.

• Use the skeleton service that we developed in class as the foundation for your service.
You can find this code (ServiceDemo.cpp) at the FTP site for the course (ftp://n0gsg.no-
ip.org/cet421).

• Use a packet sniffer such as Ethereal (www.ethereal.com) if you want to verify emission
of data onto a network.

CET421 Laboratory Supplement (Wheeler) Page 10 of 10

	DeVRY UNIVERSITY
	Course Title:
	Operating Systems and Interfacing With Lab
	Course number:
	CET421
	Credit/Contact hour:
	4-2-5
	Course Dependency:
	Prerequisite: CET375
	Instructor:
	FTP Site:
	ftp://n0gsg.no-ip.org
	Tom Wheeler
	Description
	Schedule of Experiments

