Java Projects - CET431

Spring 2007

Sr. Professor Wheeler

Project 1: Music Manager

Design a command-line application that provides the functionality of a simple database for keeping track of a music collection. The following functions must be supported:

Add entry to database (All entries are alphabetized automatically as program runs)

Browse the database

Delete entry from database

Search for entries by any field

Save music database to disk file (should automatically load file when program starts, and

prompt user to save changes on exit.)

The program will present a menu with the above choices, and will also display the number of entries in the music database. The minimum fields for each entry are as follows:

Original Artist: (A String)

Song Title: (A String)

Genre: A fixed list of possibilities; you store this as an int. You must support at least 20.
 Use the coding schema given at http://www.id3.org/id3v2.4.0-frames.txt
 in Appendix A (near the end of the plain-text document).

Filename: (a complete pathname to the file, such as E:\50s_60s\callofthewild.mp3; store as a
 String.)

The final code for this project will be supplied to the instructor as a JAR. Make sure your Java source is included within the JAR. This code must run on both Windows and Linux, so don't hard code any OS-specific information (such as Windows drive letters) into your program!

This first project will be completed individually by each member of the class. Each student will write the program and create a user’s manual. Please do not share work during this project. You are encouraged to help others with questions and problems as needed.

Suggested design strategy:
Several different Java classes should be used to implement the Music Manager:

public class DatabaseEntry
The entry records are active objects. Each object should

be able to serialize itself as either a String object, or a
 disk file record using ObjectOutputStream. This class
 has NO user interface.

public class Database

The database itself is an object and contains

an array of DatabaseEntry objects. This class has NO

user interface. It will be the DOCUMENT.

public class DatabaseUI

The user interface for the database is itself an

object, and instantiates one (or more) Database objects to

perform its work. This will be the VIEW.

DatabaseUI will contain the main() method needed for Java application execution.

Design Resources

The following Java archives may provide useful insight. These are located at:

http://faculty.kc.devry.edu/twheeler/cet431

· KeyboardInputValidation.jar
· DialogInputOutput.jar
· FormatDemo.jar
· MyFirst.jar
We will also be discussing design strategies (such as use of the document-view architecture) in class.

Required documentation:

Write a user’s manual explaining how to use the software. The documentation should have a cover page, table of contents, and document body (with detailed information on each command, and examples of correct program use).

Project 2: Group Defined Application

Design a GUI application that solves a technical design problem of your choice.

· The problem must involve engineering design, analysis, or simulation. Games are acceptable simulations, but be careful not to pick something that is too complicated and time-consuming. You may also pick a selected problem from a prior course. Previous CET431 projects can be viewed at http://faculty.kc.devry.edu/twheeler/cet431/projects.

· The problem may be mechanical, chemical, electronic, logistic (game), or scientific/technical.

· The problem may not be trivial (such as designing a voltage divider with two resistors.) A real problem must be solved, or a significant situation must be modeled. A problem that requires graphical display is a plus (for example, displaying the spectrogram of harmonic series for analyzing vibrations in rotary machinery.)

· The software solution must make use of the GUI features of the Java language.

· Your group must decide the specifications for the project, and provide these in writing to the instructor before the project begins.

· The final version of the code (with source) will be submitted to the instructor as a JAR.

Design Resources

The following Java archives may provide useful insight into the basics of designing a GUI. These are located at:

http://faculty.kc.devry.edu/twheeler/cet431

· Simple.jar
· GUI_Events.jar
· TempConv.jar
Required documentation:

Write a user’s manual explaining how to use the software. The documentation should have a cover page, table of contents, and document body (with detailed information on each command, and examples of correct program use).

The description of the technical problem must be an integral part of the documentation. The reader should be able to clearly identify the problem and how your software works to solve it.

Project 3: Internet Remote Measurement and Control

Design a GUI application that accesses a remote embedded computer through the Internet for the purpose of process monitoring. The remote system is a Z-World BL2000 single-board computer with Ethernet running IOSERVE software. Your program tasks are as follows:

· Upon clicking the TEMPERATURE button, your program will access the remote system and read the LM34 temperature sensor(s). The results will be reported on screen.

· Upon clicking the CONTROL UPDATE button, your program will access the remote system and turn on or off selected I/O points (DIGOUT4, DIGOUT5, DIGOUT6, DIGOUT7).

· Your program will have the capability of reading the status of the four input switches (DIGIN 0 -- 3) and reporting this to the user. (You may create a button called "SWITCH STATUS" for this purpose.)

· Your program will check with the remote host every two minutes (using a subthread) and read the temperature. If the temperature is above 80 degrees, the FAN will be turned on. If the temperature is below 78 degrees, the FAN will be turned back off. This action will occur as long as your program is running. If the temperature exceeds 90 degrees, your program will flash a visible warning and/or play a sound to alert the user.

The final program MUST be supplied in JAR form for distribution to clients. The source code must be in the jar.

Reading the A/D Converter and Temperature on the BL2000

The BL2000 has a 12-bit analog to digital converter with an inverting input stage. Full scale voltages are -10.24 and +10.24 volts respectively, with zero volts represented by a half-scale count of 2048, as shown in Figure 1.

[image: image1.wmf]0

V

+

10.24

V

-

10.24

V

4095

2048

0

A/D

Output

Value

A/D

Input

Voltage

Figure 1: BL2000 A/D converter characteristics

When you read the temperature (or other quantity) from the BL2000 system, you will receive a value N from the A/D in the range of 0 to +4095. This value is related to the voltage as:

(1)
[image: image2.wmf]2

2

F

K

VF

N

+

=

where N is the reported value at the A/D, V is the input voltage, F is the full-scale count of the A/D converter (4096 for the BL2000), and K is the peak full-scale factor (-10.24 V to account for the negative slope of the A/D).

Equation (1) can be solved for V to determine the input voltage at the A/D:

(2)
[image: image3.wmf]÷

ø

ö

ç

è

æ

-

=

2

2

F

N

F

K

V

Getting the LM34 Temperature
The LM34 temperature sensor IC is directly connected to the A/D input of the BL2000. This device is calibrated in degrees Fahrenheit and has a slope of 10 mV/(F. The output voltage of the LM34 can be expressed by:

(3)
[image: image4.wmf]01

.

0

´

=

T

V

o

Where V0 is the output voltage, and T is the temperature in (F. For example, at a temperature of 72 (F, the output voltage of the LM34 should be 720 mV. The LM34 is limited to a temperature range of -40 (F to +250 (F, approximately. (See the LM34 datasheet at National Semiconductor for more details).

Note that the LM34 output has not been conditioned to use the full dynamic range of the A/D converter on the BL2000, so this is not an optimal design in terms of temperature resolution.

Design Resources

The IOSERVE protocol is documented at:

http://faculty.kc.devry.edu/twheeler/cet431/ioserve.pdf

Additionally, you can download an IOSERVE emulator for testing your software. It is on the instructor's CET-431 page. Be sure to download the emulator jar and license file; place both in the same folder (not the desktop on a Windows computer, however.)

The following Java archives may provide useful insight. These are located at:

http://faculty.kc.devry.edu/twheeler/cet431

· LEDTalk.jar
· TelnetClient.jar
· MultiThread.jar
Required documentation:

Write a user manual explaining how to use the software. The documentation should have a cover page, table of contents, document body, and an optional index and glossary. This documentation should clearly explain the different parts of the system (hardware and software) and how they work together.

Project 4: Instant Messenger (Bonus)

Design a set of tools that will enable instant communication between computers in the same way as the various commercial packages do. This project is large and has two components:

· The IM Client Program. This program is executed from an individual user’s computer in the graphical user environment. The IM Client keeps track of the individual’s identity (using a local file to serialize the ID, server, and password information so that it is preserved between IM sessions).

· The IM Server. The server communicates with all IM agents and relays messages between them. It authenticates users (users without a profile may not send or receive messages on the IM network), and maintains a local cache of user profiles and passwords in a disk file. The IM server may use UDP broadcasts to announce its presence on a LAN, but bear in mind that this technique will not work through an internetwork.

Two groups will be formed to complete this project. One group will design the client, the other will do the server. Together the groups will design the protocols and standards that the IM system will use.

Protocols
Several details will need to be worked out, including:

· How a client connects and disconnects from the IM Server computer

· How a client identifies and authenticates itself

· How a client sends messages (and how these messages are addressed)

· How a client receives messages (the client will need to be multithreaded to work efficiently)

· What kind of messages can be sent (text, graphics, sound?) Only text messaging is required for this project, but more modes are certainly welcome.

_1135757011.unknown

_1135757182.unknown

_1135757295.unknown

_1135756432.unknown

