
© 2003 Tom A. Wheeler

COMP370 Lab 7: A “Chat” Application using MFC

In this experiment you’ll use MFC to create a simple terminal-emulation program. This

program will communicate through the serial port on the PC to another computer. With two

programs running together (or EZ-Terminal on the other computer) you can “chat” point-to-

point!

Instructions:

1. Create a new dialog based application called "Chat".

2. Download the files "SerialPort.cpp" and "SerialPort.h" from the instructor's web site. Place

these into the project folder, and add the two files to your project. (Project->Add To Project-

>Files...) The CSerialPort object encapsulates the functionality of a serial communications

port on your computer. You'll use it to communicate with the other computer.

3. Compile the project with F7. No errors should occur, and the class view should look like this:

4. Now we're going to add some functionality to the code. In order to intercept keystrokes, we're

going to derive a new class from CEdit. Add the new class CMyEdit as follows:

a) Right-click on "Chat classes" in ClassView and select "New Class."

b) Set the Class type as MFC Class, and name it CMyEdit. Set the BASE CLASS as

 CEdit. Leave Automation as "None."

c) Click OK to create the new class.

© 2003 Tom A. Wheeler

5. We're going to intercept the message "WM_CHAR" in the CMyEdit class as follows:

a) Click on "CMyEdit" in class view.

b) Type ^W to bring up the ClassWizard. Make sure CMyEdit is selected under Object

 IDs, and select the message "WM_CHAR" in the Messages window. It should look like

 this:

c) Click "Add Function" to add the function "OnChar()" to the class.

d) Add a PUBLIC member variable to class CMyEdit:

public:

CSerialPort* m_pPort;

 You can do this by right-clicking on the class name "CMyEdit" in the class pane, and

 choose "Add Member Variable" from the context menu. Fill in the blanks appropriately.

 This variable will be used to access the serial port object.

e) The OnChar() handler function should be added to intercept the incoming

 keyboard characters:

void CMyEdit::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)
{
if (m_pPort)

{
m_pPort->WriteByte((char) nChar); // write char to serial port
}

CEdit::OnChar(nChar, nRepCnt, nFlags); // Echo typed character
}

© 2003 Tom A. Wheeler

f) You'll need to include "SerialPort.h" at the top of "MyEdit.h" so that the compiler

 knows about the class CSerialPort:

// MyEdit.h : header file
//

#include "SerialPort.h"

//
///

// CMyEdit window

 g) Your code should still compile properly at this point!

6. Now we need to initialize the CSerialPort object in the main dialog, and open up a CMyEdit

window. Add the following variables with PRIVATE access to the CChatDlg class (right-click

on "CChatDlg" and select "Add Member Variable" from the context menu.)

CMyEdit* m_pEditWnd; // Pointer to edit window which will be created
CSerialPort m_Port; // One instance of the serial port control

At the top of ChatDlg.h, you'll need to add the following:

#include "SerialPort.h" // Added by ClassView
#include "MyEdit.h"

© 2003 Tom A. Wheeler

7. In the class view, expand [+] the view of the CChatDlg class if it isn't already expanded.

Double-click on the "OnInitDialog()" function in the CChatDlg class view. We're going to add

the following code to the end of this function to initalize the serial port, create the MyEdit

window, and place the window into the dialog box:

// TODO: Add extra initialization here

m_Port.Open(1, 9600); // COM1 , 9600 bps: Change as needed for YOUR
workstation

m_pEditWnd = new CMyEdit; // Construct a CMyEdit object

m_pEditWnd->m_pPort = &m_Port;// Tell it where our serial port is...

m_pEditWnd->Create(ES_MULTILINE | ES_AUTOHSCROLL |
ES_AUTOVSCROLL | ES_WANTRETURN | WS_DLGFRAME
| WS_VSCROLL , // Creation style (dlg frame, multiline + Vscroll)
CRect(10,10,380,300), // Size & location of Edit Window
this, // Owner of the control (US!)
1001); // ID to assign to the control (start at 1000)

m_pEditWnd->ShowWindow(SW_SHOWNORMAL);
m_pEditWnd->SetFocus();

// The following statement was provided by the framework.
// We must modify it to return FALSE since we’re setting

return FALSE; // focus to a specific control (the Edit Window)

8. Your code should now compile and run. You should see the edit window with a flashing

cursor when you run the program. Anything you type should appear in the edit window. If

this works, you’re now transmitting data to the serial port! All we need to do now is add the

logic to process incoming characters. We're going to use a second (background) thread for

this job, which is automatically provided by the CSerialPort object. The serial port will send

us a WM_COMMAND message when it gets incoming data, and we'll simply intercept the

message with a "dummy" button handler.

a) Switch to the dialog in the resource editor, and add a button called "Data" to the

 dialog box. Make sure it has the id "IDC_DATA" and the "Visible" attribute unchecked.

 This is a "dummy" button that creates a message map entry for the event handler.

© 2003 Tom A. Wheeler

b) At the end of the “ OnInitDialog()” function in CChatDlg (just after the code you added

 above, but BEFORE the RETURN statement), add the following code the activate the

 subthread:

m_Port.StartReceiverThread(this, IDC_DATA); //trigger on any incoming

//data

// The following statement was provided by the framework.
// We must modify it to return FALSE since we’re setting

return FALSE; // focus to a specific control (the Edit Window)

c) In the ClassWizard, create a message map entry for "IDC_DATA" and add a message

 handler function for "BN_CLICKED." (The CSerialPort object sends this type of message

 when data comes in; it "pretends" to be a control button.) The following code is the

 handler:

void CChatDlg::OnData()
{
CString aString;
char szIn[32];
int nResult;

m_pEditWnd->GetWindowText(aString); // Grab ALL text in Edit Window

// We got data, so ask the serial port (who originated this “event”)
// for the data that came in…

nResult = m_Port.ReadString(szIn, 31);

// The incoming string is binary, so must provide zero-terminator for
// interpretation as a text string

szIn[nResult] = 0; // Terminate string

// If there’s any data, add it to the Edit Window text, then push it back
// out to the Edit Window. (Crude, but works!)

if (nResult)
{
aString += szIn; // Add text to string buffer
m_pEditWnd->SetWindowText(aString); // update the edit window with new
text

// Force caret to end of edit window…

m_pEditWnd->SetSel(aString.GetLength(), aString.GetLength(), FALSE);
}

}

© 2003 Tom A. Wheeler

9. That's it! Build the application, connect your computer to another workstation using a

crossover cable, and launch the program. Whatever you type into the Edit window should

show up on the other side of the connection! Here’s how to build a suitable crossover cable

(or use a break-out box, available in the crib):

P2

CONNECTOR DB25F

13
25
12
24
11
23
10
22

9
21

8
20

7
19

6
18

5
17

4
16

3
15

2
14

1

P1

CONNECTOR DB25F

13
25
12
24
11
23
10
22
9
21
8
20
7
19
6
18
5
17
4
16
3
15
2
14
1

