

COMP370

LABORATORY SCHEDULE AND EXPERIMENTS

INSTRUCTOR: Tom Wheeler (Office in Room 208) 941-0430 x5211
twheeler@kc.devry.edu (DeVry e-mail address)
http://www.kc.devry.edu/homepages/twheeler

The work in this laboratory reinforces the concepts covered in COMP370, Software

Design with OOP/C++. Each project teaches a new feature of the C/C++ language.

PROJECT DESCRIPTION WEEK # DUE

 1 FAMILIARIZATION 3

2 POWER CALCULATIONS 5

3 DEFINING A CLASS 7

4 CONSTRUCTORS AND DESTRUCTORS 9

5 AN OBJECT-ORIENTED DATABASE 11

6 DERIVING A NEW C++ CLASS 13

7 MFC PROJECT (TO BE ANNOUNCED) 15

LABORATORY REPORT CONTENTS

Every person will turn in a complete lab report for each experiment performed in

COMP370. The content must be as follows:

a) Cover Page -- Must be computer-generated. Contains:

YOUR NAME

COMP370
LAB NUMBER AND TITLE

TODAY'S DATE
DATE DUE (WEEK #)

FOR: PROFESSOR WHEELER

OPERATIONAL SIGN OFF____
FINAL SIGN OFF____

"THIS IS THE ORIGINAL WORK OF (your name)"

(YOUR SIGNATURE)

HINT:

Make sure to have a completed cover page when you start each lab. No sign-off can

be given without a proper cover page.

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 2

ABOUT SIGN-OFFS:

A sign-off will be given only during the scheduled laboratory period. The sign-off

verifies that your program works correctly. No credit is given to any report lacking

a sign-off. You must present your program listing and demonstrate correct

operation to obtain a sign-off. Your name must be at the top of all program listings.

b) End-User Documentation -- This should be a complete description of how to

operate your program from an end-user's point of view. More information on this

topic is given in the section "End-User Documentation."

• Sample Run -- This is a printout of a "typical" run of your program. To get a

"screen dump" of your program, do the following:

1. Let it run in an MS-DOS window. Run the program.

2. Click on the system menu (MS-DOS icon at top-left of the blue window frame).

3. Choose Edit->Mark, and highlight the text you wish to capture. Press the

 RETURN key to copy the highlighted text to the clipboard.

4. Paste the highlighted text into the desired word-processing application.

Note: If you can't see the system menu, make sure your application is not running in

full-screen mode. Press ALT-ENTER to switch back to a window if needed.

c) Program Listing -- A printed listing of your program. Your name must be at the

top of all program listings. The program will be properly documented and

commented throughout. See "Program Documentation."

TURNING IN WORK

Work may only be turned in directly to the instructor, or his appointed

representative, during the laboratory period. Do not turn in papers to room 208.

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 3

GRADING

Each report in COMP370 is worth 100 points. 7 reports are required, which

produces a raw total of 700 points possible. This is converted into a percentage (your

total point score is divided by 7) for inclusion into the total course grade. (See the

COMP370 syllabus for details).

Therefore, the labs contribute 100 points of the 500 points possible in

COMP370.

Laboratory Report Grading breakdown:

End-user documentation 40 points

Overall neatness of entire report 30 points

Accuracy and readability of listing 30 points

100 points total

End-user documentation will be graded based on clarity, grammar, completeness,

and neatness.

The program listing is evaluated for both accuracy and adherence to certain stylistic

conventions including (but not limited to):

• Properly written comment block or "header" for each function.

• Consistent and readable use of indentation.

• Comments for each major variable function in program.

• Use of structured-programming techniques (where appropriate), and the

adherence to naming conventions for variables and other objects.

Course Policies

I. Lab Partners: There are no lab partners allowed in COMP370.

II. Handing Work in: Work should be given directly to the instructor or his

authorized assistant. Under no circumstances should work be turned in to any

other persons (including the office) without advance permission from the instructor.

III. Late Work: Late laboratory reports are not accepted in COMP370L. Reports are

due during or before the end of the laboratory of the week number indicated on the

schedule on page 1 of this document. The laboratory period ends at xx:50 UTC of the

second hour of the assigned period. (UTC=Coordinated Universal Time, Standard

World Time).

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 4

IV. Lab Success Hints: The successful student will have worked through the

majority of the source code before entering lab. Laboratory time should be used to

proper advantage; this is the main time that the instructor will be available to assist

in troubleshooting and debugging, and it is the only time that sign-offs will be

available. Please plan your activities accordingly.

V. Plagiarism: Copying the work of another, and claiming it to be your own is

plagiarism. This includes (but is not limited to) copying others homework, copying

from a lab manual or textbook, or collusion. The minimum penalty for cheating in

any form is a grade of zero for the element involved; in some cases, failure of the

course and/or expulsion from the Institute will also result. All cases of misconduct

will be documented and forwarded to Student Services for disciplinary

consideration. The DeVry Student Handbook contains complete information on this

topic.

Please do not turn in any work that is not your own! If in doubt, ask the instructor.

Here are some ways to avoid any problems:

• Don't share your computer files (text, C/C++ source/object, etc) with anyone else.

• Don't share a diskette (or other media) with another student; it's too easy to get

files mixed up.

• Don't copy answers from a neighbor. If you don't understand how to do it, ask!

• Decline any request from fellow students for a copy of your work. Anybody

needing this level of help should ask the instructor.

MISCELLANEOUS INFORMATION

Emergency Procedures: There are plaques located in the lab discussing

emergency procedures. The instructor will remain in charge of your class

group in an emergency.

Food and Drink: Are not allowed in the laboratory at any time, even in closed

containers. Violators will be expelled from the laboratory.

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 5

GOOD DATA PROCESSING PROCEDURES

Computers will be used extensively in this lab. The student can expect to spend

many hours creating and updating C programs; loss of this data can be disastrous!

The following tips will help to minimize the chance of losing a project:

• Make frequent backups. These backups should be in at least two different

physical locations.

• Always keep schoolwork on two different diskettes. Both of these disks will

contain identical information. If a computer damages one diskette, the data can

still be recovered from the other during the lab period.

• Don't save your data to the hard disk on the workstation, except in an

emergency. The hard disks on lab workstations are periodically "cleaned" of any

extra information as part of a housekeeping program.

• Keep the work for each class on a separate disk.

• Write your name, course, section, and professor's name on each disk. This will

make it easier for others to return your work to you should you accidentally leave

a disk behind. It happens to all of us!

• If you're using a computer at home, an anti-virus program is strongly

recommended.

• Remember that at some time in the future, your C program will be dangerous to

the general health and well being of your computer. An errant C program can

easily wipe a hard disk clean, and in some cases, can damage the hardware. Be

guided accordingly. If you execute a C program and the screen blanks

unexpectedly, and you hear any whistling, arcing, or other suspicious sounds

from the computer or video display monitor, immediately turn off or reset the

machine!

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 6

VISUAL C TIPS

Visual C++ is intended to be used by a single user who will be storing all his or her

source files directly on the hard disk. Attempting to compile a project directly from a

floppy diskette is not advisable.

Visual C++ programs are written as projects. A project contains all the source and

header files you have created, plus some supporting information used by the

compiler. For example, the project "WaveGen" is arranged like this:

Contains the executable
(WaveGen.exe) in release mode.

Contains the source files and
workspace file (WaveGen.dsw)

For Win32 GUI applications, this
folder contains the fixed
resources (such is icon files)

Main project folder
contains all source
files.

Double click the
DSW file in
Explorer to launch
VC and
automatically open
the project
workspace.

The main project folder, WaveGen contains all the source (*.CPP) and header (*.H)

files for your project.

When you tell VC to build (F7) your project, it will create a new subfolder called

either Release or Debug (depending on your Project... settings). The Release folder

contains the object file(s) for your program, a rather large PCH (precompiled header)

file, and the executable version of your program. The Debug folder contains all of

this, plus specific information for the symbolic debugger. It is not unusual for 10 MB

of data to accumulate in these folders, however, you can safely delete these folders

when it is time to save your project back to a floppy disk.

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 7

Working with a Project in Lab

When you begin working with a VC project in lab, copy the entire project folder from

your floppy or ZIP disk to drive C (hard drive) and work with the project as you

would on your own machine.

When you build a VC project, VC will fill the Release (or Debug) folder with files

much too large to be held on a floppy. Eventually, you will need to save your source

code and project information onto some type of obsolete media (such as a floppy disk,

1/2" tape, audio cassette, etc...). To do so:

1. Delete the Release and Debug sub-folders. (If you wish to preserve the executable

program file, copy it before doing this.)

2. Using Windows Explorer, copy the project main folder back onto the floppy disk.

3. Delete the project folder you created on the hard disk to prevent others from

obtaining your work.

All but the largest of projects can be preserved on a floppy disk using this method.

About VC Projects

Visual C++ is a project-oriented environment. It can not compile individual C++

source code files unless they are part of a project. For large and complicated

programs, this is a great advantage. It allows the programmer to concentrate on the

details of what he or she is doing, because VC will keep an eye on everything in the

project at build time, ensuring that everything is put together right.

You can create a project in several ways. First, you can do it from the File menu

(choose New, Project and follow the prompts.) Once you have created the project, you

will have to inform VC to add the desired C++ source/header files. Second, you can

force VC to open a C++ source file by dragging and dropping the C++ source file on

top of the Visual C++ program icon. When you attempt to build (F7) with the open

C++ source file, VC will issue a warning that no project exists, and will ask you if

you want a default workspace created. Answer "yes" and a workspace will be built,

and the source file will be compiled. This last method is not very clean, but it works

in a pinch.

Source (.CPP) and Header (.H) Files

When you create a multi-file project, certain things can get you in trouble very

quickly. It is best to let Class Wizard create new files whenever possible. In a multi-

file project, be careful to avoid any generation of code or data objects within a header

file. Header files should contain class and constant definitions, and nothing else.

Failure to observe this may lead to pattern baldness!

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 8

END-USER DOCUMENTATION

 End-user documentation is the set of information that enables a relatively

uninformed second party to properly operate your program. There are several points

which should be addressed, including:

a) Purpose of the Program. This should be a short summary of what results a user

can expect from running your program.

b) Using the Program. Should have several basic pieces of information, including

but not limited to:

• What Operating System and Computer are required? (Are there any special

hardware or software requirements?)

• How is the program started? (What command is used, or what icon is clicked?)

• What inputs are required by the program? (What information must be provided

by the user to operate the software, and in what order?)

• What outputs are generated by the program? (How will it look on the screen?)

• How does the program respond to erroneous user input? (How fault-tolerant is

the program?)

For reports in COMP370, the first item need not be addressed, as all students will be

working under the same computer platform. Most laboratory projects will yield

documentation that is less than one page in length. Keep documentation simple and

concise. Your documentation must "walk" the user through a session with the

software, showing all on-screen prompts, user inputs, and program responses.

Actual applications programs tend to be involved efforts, and as such,

documentation becomes a much larger (and much more important) task. When

writing documentation, always think of the uninformed end-user.

End-User Documentation "Dos and Don'ts"

DO

• Walk users through the operation of

the program, showing prompts and

responses as they'll actually appear.

• Include appropriate figures and

illustrations to show how your

program applies to a problem.

• Use a spelling and/or grammar

checker to proof your work.

DON'T

• Assume that the end-user knows

how your program should operate.

(Even technical users can be

intimidated by a new piece of

software.)

• Use a spell-checker as a substitute

for proof reading. ("Eye awl weighs

use my spell check ere.")

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 9

PROGRAM DOCUMENTATION

Program documentation is information that is directed at a technical person who

may be required to maintain your code. Later, someone (possibly you!) will most

likely have to make corrections or additions to your program. The quality of

program documentation (and the basic structuring of your code) largely determines

how easy (or difficult) this task will be.

Documentation is generally done in at two forms. For involved projects, the

flowchart is an excellent method for capturing the train of events inside a program.

The flowchart gives a conceptual, "bird's eye" view of what is happening. Flowcharts

should avoid specific details such as "increment the R register" unless such detail is

necessary to understanding the overall action of the program. A more suitable

comment might be "Add $1.00 to account balance," since this directly states what the

desired effect is. In other words, flowcharts are more concerned with what is

happening rather than how the machine mechanically achieves it.

The second form of documentation is the program listing. The program listing is a

detailed explanation of the mechanics behind the execution of a task. It should be

appropriately and thoroughly commented. In "C" programs, blank lines should be

inserted to separate parts of a task that are logically separate, and indentation

should be used where appropriate. Consider the two pieces of code below:

// This poorly-styled code actually works!
int my_function(x,y)
int x,y;
{int alpha,z;alpha=0;

for(z=1;z<10;z++) {alpha=alpha+particle(x,y*y,z);y--;}
return(alpha);}

This code will compile and execute just fine, but it's difficult for humans to

understand and maintain. The purpose of this code (and how it fits into the context

of the whole program) is impossible to determine by mere inspection. It would be

easier to understand if it were written like this:

//
// Function: int my_function(int x,int y)
//
// Inputs: integers x and y. x is the RMS mass of the particle and y
// is its current velocity in Kilometers/uS.
// Returns: an integer with an approximation of the deceleration of the
// particle in Kilometer/uS^2
//
// Errors: There are no error conditions possible for this function.
//
//

int my_function(int x,int y)
{
int alpha,z;

Note how the C++

comment character

sequence "//" makes a

nice "box" for the

function header!

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 10

alpha=0; // initial acceleration is assumed to be zero.

/* Compute the approximate acceleration using BIG AL's iterative method.
Reference: CAR AND DRIVER magazine, July 1990, pp 34-35. */

for(z=1;z<10;z++)
{
alpha=alpha+particle(x,y*y,z);
}

return(alpha);
}

Note that every instruction in a program listing isn't necessarily commented.

Machine instructions, in and of themselves, are generally self-evident because of the

use of mnemonics. The documenting comments therefore serve to illuminate

individual ideas or concepts that are important for understanding how the machine

is accomplishing the task at hand.

Every function you define should have a header comment. This important field

describes what the function does, what inputs it uses, and what outputs it produces.

It should be written as if you were explaining how to use the function to another

programmer.

Appropriate placing of comments, program elements, and use of indentation all help

to make source code more easily understood.

PROJECT DESCRIPTIONS

For a program to be accepted, it must meet the minimum specifications for each

project. Extra functionality, as a function of your own creativity, is encouraged, as

long as it does not detract from the original purpose of the project (or make it

difficult to evaluate or analyze.)

In most cases, the inputs and outputs of the program will be specified. Your program

should have the exact inputs and outputs that we specify, otherwise it becomes

difficult for us to check your program's operation.

It's OK to mix C and C++ comment

styles, as long as you're consistent.

Note how each algorithm is

explained to the reader.
Consistent use of

indents improves

readability.

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 11

PROJECT 1: FAMILIARIZATION

Please read pages 1-33 of Beginning Visual C++ 6 (available in the Library) before

starting. Bring the textbook to lab. You may need to refer to it as you perform the

steps in this experiment.

Let's get familiar with Visual C++. The best way to do this is to build a working

Win32 console application:

1. Launch Visual C.

2. From the File menu, choose New and create an empty Win32 console application.

(Make sure to select the PROJECT tab in the dialog box.) Call your project

MYPROJECT.

3. From the Project menu, select Add to project and New... , and select "C++ Source

File." Call the new file MYFIRST.CPP. Make sure the "Add to Project" box is

checked.

4. Again from the Project menu, add a new component to your project, a "C/C++

Header File." Call this file MYFIRST.H.

5. From the Project menu, select Add to project and New... , and select "C++ Source

File." Call the new file MYMAIN.CPP.

6. Add the following code to MYFIRST.H:
//
// Myfirst.h -- Definition of the CTriangle class
//
class CTriangle
{
public:

// constructor
CTriangle(double Base = 3, double Height = 4, double Hy p = 5);

// destructor
~CTriangle();

// Public methods
double GetArea();
void SetBase(double Base);
void SetHeight(double Height);
void SetHyp(double Hyp);
double GetBase();
double GetHeight();
double GetHyp();

int GetNumberOfTriangles();

private:

double m_Base, m_Height, m_Hyp;

static int m_nNumberExisting;
};

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 12

7. Add the following code to MYFIRST.CPP:

#include <math.h>
#include "myfirst.h"
//
// Myfirst.h -- implementation of the CTriangle class
//
int CTriangle::m_nNumberExisting = 0;

double CTriangle::GetArea()
{
return(m_Base * m_Height / 2.);
}

void CTriangle::SetBase(double Base)
{
m_Base = Base;
}

void CTriangle::SetHeight(double Height)
{
m_Height = Height;
}

void CTriangle::SetHyp(double Hyp)
{
m_Hyp = Hyp;
}

double CTriangle::GetBase()
{
if (m_Hyp >= m_Height)

m_Base = sqrt(m_Hyp * m_Hyp - m_Height * m_Height);
return(m_Base);
}

double CTriangle::GetHeight()
{
if (m_Hyp >= m_Base)

m_Height = sqrt(m_Hyp * m_Hyp - m_Base * m_Base);

return(m_Height);
}

double CTriangle::GetHyp()
{
m_Hyp = sqrt(m_Base * m_Base + m_Height * m_Height);

return(m_Hyp);
}

int CTriangle::GetNumberOfTriangles()
{
return(CTriangle::m_nNumberExisting);
}

// Constructor

CTriangle::CTriangle(double Base , double Height , double Hyp)
{
CTriangle::m_nNumberExisting++;

m_Base = Base;
m_Height = Height;
m_Hyp = Hyp;
}

// Destructor
CTriangle::~CTriangle()
{
m_nNumberExisting--;
}

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 13

8. Add the following code to MYMAIN.CPP:

#include <stdio.h>
#include "myfirst.h"

void main(void)
{
CTriangle Triangle1;

printf("%d Triangles exist\n", Triangle1.GetNumberOfTriangles());

printf("Triangle 1 area is %lf Units^2\n\n",
Triangle1.GetArea());

printf("Triangle 1 base is %lf\n", Triangle1.GetBase());
printf("Triangle 1 height is %lf\n", Triangle1.GetHeight());
printf("Triangle 1 hypotenuse is %lf\n", Triangle1.GetHyp());

CTriangle Triangle2(10., 11., 12.); // impossible triangle
printf("%d Triangles now exist\n", Triangle1.GetNumberOfTriangles());

printf("Triangle 2 base is %lf\n", Triangle2.GetBase());
printf("Triangle 2 height is %lf\n", Triangle2.GetHeight());
printf("Triangle 2 hypotenuse is %lf\n", Triangle2.GetHyp());

printf("Triangle 2 area is %lf Units^2\n\n",
Triangle2.GetArea());

printf("Changing triangle2 base to 5 units.\n");

Triangle2.SetBase(5.);

printf("Triangle 2 area is now %lf Units^2\n\n",
Triangle2.GetArea());

printf("Triangle 2 hypotenuse is now %lf\n", Triangle2.GetHyp());

CTriangle* pTriangle3 = new CTriangle(1.,2.);

printf("Triangle 3 hypotenuse is %lf\n",
pTriangle3->GetHyp());

printf("%d Triangles now exist\n", Triangle1.GetNumberOfTriangles());

printf("Deleting Triangle3\n");
delete pTriangle3;

printf("%d Triangles now exist\n", Triangle1.GetNumberOfTriangles());

}

9. Build the project (F7) and execute it (CTRL-F5). Congratulations! You've just run

your first OOP program under Visual C!

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 14

PROJECT 2: POWER CALCULATIONS

This project is our last taste of conventional (POP) C programming. It is intended to

refresh your existing C programming skills. Since we're nerds, let's try an electrical

problem!

The average power dissipated in an AC circuit can be calculated as follows:

∑ =
= n

i
L

n

R

V

n
Pav

1

21

Where Vn is instantaneous voltage ("sample") at each point on the waveform, n is

the number of points on the waveform, and i is an index (counter) variable.

Don't panic. The above formula tells us to calculate average power by following this

sequence of steps:

• Calculate the instantaneous power (V 2 / R) at each point on the waveform.
• Accumulate the sum of the instantaneous powers (add all the powers

calculated in the first step above.)
• Divide by the number of samples, n, to get the average.

Your program will perform this calculation on a sine waveform. It will ask the user

for a peak voltage, starting angle, ending angle, and load resistance (RL). The

program will calculate the voltage across the resistor in 1-degree steps (this result

can be optionally displayed), and will report the average power in the resistor. A

typical run looks like this:

Comp 370 Average Power Calculator

What is the peak voltage? 120
What is the starting angle in degrees? 0
What is the ending angle in degrees? 90
What is the load resistance in Ohms? 50

The average power in the resistor is 144 Watts.

Note: You can use an array to store the sine wave data, but it is not required. This

program must use modular design techniques -- don't just write a main() function!

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 15

PROJECT 3: DEFINING A CLASS

In order to demonstrate the action of objects in classes, you will create and define a

class called CResistor. Objects of type CResistor will be an abstraction of physical

resistors in electronic circuits, and they will have similar behavior. Your class must

function correctly within the framework (main) shown below. You will use main.cpp

as a foundation for this program.

#include <stdio.h>
#include "Resistor.h" // the header for your CResistor class

void main(void)
{
CResistor r1,r2,rtotal;
double value;

//
// Demonstration of finding series resistance
//

printf("What is the value of R1 in Ohms?");
scanf("%lf", &value);
r1.SetValue(value);

printf("What is the value of R2 in Ohms?");
scanf("%lf", &value);
r2.SetValue(value);

printf("What current will flow in the equivalent resistance (Amps)?");
scanf("%lf", &value);

rtotal = r1 + r2; // overloading of the + operator will be required
rtotal.SetCurrent(value); // Set current in new total resistance

printf("The total series resistance would be %lf\n", rtotal.GetValue());
printf("There would be %lf volts dropped under this condition.\n\n",

rtotal.GetVoltage());

rtotal = r1 || r2; // overloading of the || operator means parallel
rtotal.SetCurrent(value); // must set current again since assignment

// overwrites previous object data (default
// copy constructor is used.)

printf("The total parallel resistance would be %lf\n", rtotal.GetValue());
printf("There would be %lf volts dropped under this condition.\n\n",

rtotal.GetVoltage());

}

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 16

Required methods for CResistor and their explanation:

Method Prototype Method Explanation of Function

void SetValue(double Value); This function sets the value of the

resistor object.
double GetValue(void); This function returns the current value

held in the resistor object.
void SetCurrent(double Current); Sets the current within the resistor

object, which will be needed for voltage

computation.
double GetVoltage(void); Returns the voltage that is being dropped

across the resistor, which is based upon

the Ohm's law calculation of current and

resistance.
CResistor operator+(CResistor&
ValR);

Returns a new CResistor object that

contains the total series resistance of two

CResistor objects.
CResistor Operator||(CResistor&
ValR);

Returns a new CResistor object that

contains the total parallel resistance of

two CResistor objects.

Program Inputs:

The values as requested by the main.cpp framework.

Program Outputs:

The correctly calculated outputs from main.cpp.

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 17

PROJECT 4: CONSTRUCTORS AND DESTRUCTORS

Constructors and destructors are important components of most classes. A

constructor is a method (function) that is called when an object of a class is created.

This allows for controlled initialization of object data, which eliminates any

questions as to the initial state of an object, regardless of whether it is locally or

globally stored. An object's destructor is called whenever the object is about to go out

of scope (which means that the object is about to be destroyed).

One of the primary actions that takes place in a destructor is the release of any

memory that has been dynamically allocated by the object. Because this activity is

made to take place automatically (at destruction time), the programmer's burden is

eased, and the likelihood of memory leaks is greatly diminished.

In this project, you will create a general-purpose calculator for computing the total

resistance of a series-parallel circuit made of CResistor objects. You will also

exercise your knowledge of dynamic memory allocation by using new and delete to

create and destroy intermediate CResistor objects. The program will be menu-driven

and will appear as follows:

COMP 370 Resistance Calculator by (your name)

The total resistance is 0 Ohms.
The voltage drop is 0 Volts.
The current is 0 A.

What do you want to do?

1. Add a series resistor to the circuit
2. Add a parallel resistor to the circuit
3. Subtract resistance from the circuit
4. Change the current in the equivalent resistance
5. Exit the program

Choose?

How the program will work

The program will begin by creating a local CResistor object called RTotal, which will

have a current of 0 Amps and a resistance of 0 Ohms by virtue of its default

constructor. This object will persist throughout the entire run of the program and

will serve to hold the total resistance, current, and voltage values.

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 18

When the user chooses option 1, the program will ask for the resistance of the

resistor to be added in series. A CResistor object will be created using the new

operator (using the class constructor to initialize its value with the user's choice),

and this object will be added to and stored in RTotal. The temporary CResistor

object will then be destroyed. The program will then loop back to the menu and

display the result.

Options 2 and 3 will operate in an identical manner to option 1. A temporary

CResistor object must be instantiated in each case to store and process the user's

input.

Option 4 will simply ask for the new value of current, and will use the

SetCurrent() method of the RTotal object to modify the current flowing in the

equivalent resistance. After completion of this task, the program will loop back to

the menu to display the result.

The following additions to the CResistor class will be necessary:

Method Prototype Method Explanation of Function

CResistor(double Value = 0,

double Current = 0)
Class constructor with two possible

default arguments. Note that the

"default" constructor configuration (no

arguments passed) sets both the

resistance and current to zero.

~CResistor() Class destructor. Print a message stating

that a CResistor object was destroyed.

CResistor operator-(CResistor&
ValR);

Returns a new CResistor object that

contains the difference in resistance of

two CResistor objects.

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 19

PROJECT 5: AN OBJECT-ORIENTED DATABASE

Many programming projects involve the use of several classes that are designed to

work together. This project introduces a class called CDatabase which is designed to

encapsulate a data storage and retrieval system. CDatabase objects are complete

functioning databases with the following capabilities:

• Storage of a variable number of document records.

• Record search for a particular text string.

• Deletion of selected records.

• Printing of selected records to the display.

CDatabase objects operate in a very straightforward manner. When a CDatabase

object is instantiated, it allocates an array of CDatabaseEntry objects. The

CDatabase object manages the individual CDatabaseEntry objects as needed, and

when specific actions are needed (such as printing), control is passed to the proper

CDatabaseEntry object.

For example, if the caller wishes to start up a CDatabase, add a record, and then

print that record's contents (the first record in the database), the following sequence

of instructions would work:

int nResult; // result flag
CDatabase aDB(100); // create empty database with 100 elements

// Add a chip called "74LS14" to the database with a cost of
// $0.59 and a part number of 12345

aDB.AddEntry("74LS14", 0.59 , 12345);
//
// Check to see if the database accepted the entry
//
if (nResult < 0)

printf("\7The database did not accept this item.");

// print the first element in the database (the one we just
// created)

aDB.PrintEntry(0); // 0 would be the first element,
// 99 would be the last (100 elements)

The logic to exercise the CDatabase class is provided for you in the file "main.cpp"

which is a completely functional main program. The code for the CDatabase class is

contained in the files "Database.h" and "Database.cpp" which are also supplied in

completely functional form.

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 20

The project also demonstrates the use of helper classes. Helper classes are used to

facilitate specific functions. The class CInput is a helper class that encapsulates

most of the basic functionality for enhanced user input. CInput replaces scanf() and

gets(), providing a much more stable (and simple) input mechanism. You can learn

more about CInput() by studying the code in main.cpp, and of course, the source files

for the CInput class.

What is my task in this project?

Your task is to create the CDatabaseEntry class, which CDatabase needs to

function. All the other classes have been completely defined and written, and a

functioning main program has been provided to test the works. The definition of the

CDatabaseEntry class is as follows:

class CDatabaseEntry
{
public:
CDatabaseEntry();
virtual ~CDatabaseEntry();

char* GetItemName();
void SetItemName(char* szName);

double GetItemCost();
void SetItemCost(double dCost);

int GetPartNumber();
void SetPartNumber(int nPart);

void PrintContents();

protected:

char m_szItemName[128];
double m_dItemCost;
int m_nPartNumber;

};

Notice that each CDatabaseEntry object represents just one entry in the complete

database. The CDatabaseEntry objects do not have to worry about managing the

database; they must only take care of themselves.

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 21

Description of the CDatabaseEntry Methods

CAUTION: Your declaration of the CDatabaseEntry class must be in a file named

"DatabaseEntry.h", and your implementation of the class must be in a file named

"DatabaseEntry.cpp". The methods you write must correspond exactly to the

prototypes and functional conventions described below, or your class won't interface

properly with the database manager (CDatabase).

Method Prototype Method Explanation of Function

CDatabaseEntry(); Class constructor. Set members

m_dItemCost and m_nPartNumber to

zero; place the words "Empty record" into

the string m_szItemName.
~CDatabaseEntry(); Class destructor.
char* GetItemName(); Returns a pointer to the internal string

m_szItemName.
void SetItemName(char* szName) Copies the caller's string szName into

the internal member m_szItemName

(use strcpy()).
double GetItemCost(); Returns the value in m_dItemCost.
void SetItemCost(double dCost); Sets the internal member m_dItemCost

equal to the value passed in dCost.
int GetPartNumber(); Returns the value in m_nPartNumber.
void SetPartNumber(int nPart); Sets the internal member

m_nPartNumber equal to the value

passed in nPart.
void PrintContents(); Prints the contents of the object to the

screen in a neat format, such as:

Item Name : 74LS14

Part Number: 12345

Item Cost : $0.59

Make sure to print a newline character

before and after printing the record

contents.

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 22

How to Proceed with the Project:

1. Create a blank Visual C project of type Win32 Console.

2. Move the provided source files "main.cpp", "database.cpp", "database.h",

"input.cpp", and "input.h" to the same Windows folder as your VC project.

3. At the Project , Add to Project, Files... menu of Visual C, add all of the files of

step 2 to your project, then press the Save All (multiple disc) button on the

toolbar.

4. Click on the Class View tab for the workspace.

5. Click on the [+] sign next to the top most item in the class view window to see the

classes in your project. It should look something like this:

6. If you can't get the display above, don't proceed further until you find the

problem, or get help.

7. Right click on the root item ("MyDatabase classes") and select the choice "Add

new class." You should see something like this:

8. Call the new class you're adding CDatabaseEntry. Visual C will automatically

create the CPP and H files.

9. Implement the class CDatabaseEntry as described above.

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 23

PROJECT 6: DERIVING A NEW C++ CLASS

One of the most useful features of C++ is the ability to re-use objects without the

need for the tedious operations of cutting and pasting source code. However, often

an existing object doesn't completely fill a program's needs. In this case, two options

are possible. First, the programmer can modify the source code for the object in

question, and add the required functionality. This method assumes that the

programmer has access to the object's source code, and that the changes produced

will not affect how the object will work in other portions of the project. Often this is

an undesirable method.

The second way of providing additional (or modified) functionality is to derive a new

class from the existing class, using the C++ property of inheritance. The new class

can then be modified appropriately to obtain the desired behavior. The advantage of

this method is that the original class definition is left unchanged, so that other

programs or modules that use the original class will continue to operate with no

required changes.

When a programmer derives a new class from an existing one, he or she does not

need detailed knowledge of the inner workings of the parent class. The programmer

need only concentrate on the details that will be different from those in the base

(parent) class.

When a new class is derived from a base class, all the methods and variables of the

parent class are inherited, with two exceptions. Constructors, destructors, and

private members of the base class are not inherited. Therefore, the child (derived)

class must provide its own constructor and destructor. The child class will not have

access to any private members of the parent class. Well-designed base classes use

the keyword protected to allow derived classes access to necessary data elements.

A child class is responsible for constructing its immediate parent. If the parent has a

default constructor, the compiler will automatically call it. Under any other

condition, the child must call the parent's constructor before it can proceed.

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 24

Description of the Project

In this project, you will derive a new class called CMyDatabase from the CDatabase

class of project 5. CMyDatabase will provide the same exact functionality as

CDatabase, except for the following details:

• CMyDatabase will provide a function called Browse() that performs the same

function as the BrowseDB() function in the main program of project 5. (You may

transplant this code as needed.) This will demonstrate how a derived class can

have enhanced functionality when compared to a parent.

• The PrintEntry() method of CDatabase will be overridden in CMyDatabase. This

means that CMyDatabase will contain a function called PrintEntry() that

replaces the PrintEntry() function from the base class. This will demonstrate the

ability to override parent-class methods.

Instructions

1. Build a new visual C console application called "project6" in a new folder.

2. Copy all the source and header (*.h, *.cpp) files from project 5 except main.cpp to

the project6 folder.

Caution: Do not copy anything except the source and header files. For example,

do not copy the project (*.dsp) or workspace (*.dsw) files from project 5!

3. Copy the supplied main.cpp for project 6 into the project 6 folder. This new main

program will test your CMyDatabase class.

4. Add all the source files and header files in the project 6 folder to the project,

using the Project , Add to Project, Files... menu of Visual C.

5. Add a new class to your project called "CMyDatabase" that is derived from

"CDatabase." To do this, right-click on the root item ("project 6 classes") in the

class view window, then select "New Class..." from the menu. The resulting dialog

will allow you to derive the new class from an existing class; choose this option.

The resulting files generated will be "MyDatabase.cpp" and "MyDatabase.h".

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 25

6. Examine the beginning of "MyDatabase.h" and you'll notice that Visual C has

automatically added the following include:

#include "Database.h"

This should make sense; after all, the CMyDatabase class is derived from

CDatabase, and the compiler therefore needs to know the details about

CDatabase when building CMyDatabase objects. However, this isn't enough

information. The CDatabase class also uses CDatabaseEntry objects, and the

compiler needs to know about these as well. Therefore, the following include

must be added to "MyDatabase.h" before the one above:

#include "DatabaseEntry.h"

7. Add the following constructor code to CMyDatabase. This code will correctly call

the base class constructor:

CMyDatabase::CMyDatabase(int nMaxEntries):CDatabase(nMaxEntries)
{
;
}

// This constructor should be prototyped as follows in MyDatabase.h:

CMyDatabase(int nMaxEntries = 100);

Important: Make sure that CMyDatabase has no default constructor. Otherwise,

an error will be generated at compile time due to the ambiguous default

constructor call.

8. Add the prototype for the overridden PrintEntry() function to the MyDatabase.h

file, and the PrintEntry() function to MyDatabase.cpp:

void CMyDatabase::PrintEntry(int nItemID)
{
printf("\n--------------------------"); // print extra banner so that

// we can tell that overridden
// method is being called

CDatabase::PrintEntry(nItemID); // call base class method here
printf("--------------------------\n");
}

9. Add the prototype for the new Browse() function to MyDatabase.h:

void Browse(void);

COMP370 SOFTWARE DESIGN WITH OOP/C++ PAGE 26

10. Add the Browse() function to MyDatabase.cpp. You can do this by transplanting

the code for BrowseDB() from the main.cpp of project 5. No argument is passed,

and since the function is now contained within the object, there is no need for the

"pDbase" pointer. Every place where this pointer is accessed, such as:

if ((nCount=pDbase->GetNumberEntries()) == 0)

You can replace this code with either of the following:

if ((nCount = this->GetNumberEntries()) == 0)

Or even better,

if ((nCount = GetNumberEntries()) == 0)

Once you have completed this, you will now have a database object that is "self

browsing" (look at how main.cpp has been simplified.)

11. The project should now compile and run correctly with these changes. Note how

main.cpp instantiates the database; it now builds a CMyDatabase object, instead

of a CDatabase object. CMyDatabase has inherited all the functionality of

CDatabase, so everything in main() uses it identically -- except where we

implemented the Browse() function.

12. If you have time, see if you can transplant the other functionalities (such as the

search and delete dialogs) into CMyDatabase. (This is not a primary requirement

for this project, so do it at your own pace.)

