EET-225 Homework \#4

Sr. Professor Wheeler

Instructions: This homework must be turned in within a flat 3-tab paper folder (no threering binders will be accepted). Answers must be written very neatly or typed. Use complete sentences when answering all questions. Where a problem involves a circuit, you must redraw the circuit as part of the solution, showing all indicated voltages and currents on the circuit diagram. Box or underline all final answers and show all work (see syllabus for example of homework standards).

1. Calculate the collector current and Gamma (γ) of the circuit below for $\beta_{\mathrm{DC}}=100$ and 150 . Draw the load line, showing the Q-point of the circuit.

The collector saturation current is:

$$
I_{C(S A T)}=\frac{V_{C C}}{R_{C}+R_{E}}=\frac{12 V}{1 K+0}=12 \mathrm{~mA} \quad \text { (This defines one end of the load line) }
$$

The cutoff voltage $\mathrm{V}_{\text {CE (OFF) }}$ is $\mathrm{V}_{\mathrm{CC}}(12 \mathrm{~V}) \quad$ (This defines the other end of the load line)

When $\beta_{\mathrm{DC}}=100$, the collector current can be calculated by:

$$
I_{C}=\beta I_{B}=\beta\left(\frac{V_{C C}-V_{B E}}{R_{B}}\right)=(100)\left(\frac{12 \mathrm{~V}-0.7 \mathrm{~V}}{180 \mathrm{~K}}\right)=\underline{\underline{6.27 \mathrm{~mA}}}
$$

When $\beta_{\mathrm{DC}}=150$, the collector current becomes:

$$
I_{C}=\beta I_{B}=\beta\left(\frac{V_{C C}-V_{B E}}{R_{B}}\right)=(150)\left(\frac{12 \mathrm{~V}-0.7 \mathrm{~V}}{180 \mathrm{~K}}\right)=\underline{\underline{9.42 \mathrm{~mA}}}
$$

The resulting load line looks like this:

The Q-point isn't very stable with base bias; the collector current directly depends upon β_{DC}, which isn't very desirable.
2. Calculate the collector current and Gamma (γ) of the circuit below for $\beta_{\mathrm{DC}}=100$ and 200. Draw the load line, showing the Q-point of the circuit.

The collector saturation current is:
$I_{C(S A T)}=\frac{V_{C C}}{R_{C}+R_{E}}=\frac{20 \mathrm{~V}}{2.2 K+270 \Omega}=8.09 \mathrm{~mA} \quad$ (This defines one end of the load line)
The cutoff voltage $\mathrm{V}_{\mathrm{CE}(0 \mathrm{FF})}$ is $\mathrm{V}_{\mathrm{CC}}(20 \mathrm{~V}) \quad$ (This defines the other end of the load line)

When $\beta_{\mathrm{DC}}=100$, the collector current can be calculated by:

$$
I_{C}=\frac{V_{C C}-V_{B E}}{R_{E}+R_{B} / \beta_{D C}}=\frac{20 \mathrm{~V}-0.7 \mathrm{~V}}{270 \Omega+470 \mathrm{~K} / 100}=\underline{\underline{3.88 \mathrm{~mA}}}
$$

When $\beta_{\mathrm{DC}}=200$, the collector current becomes:
$I_{C}=\frac{V_{C C}-V_{B E}}{R_{E}+R_{B} / \beta_{D C}}=\frac{20 \mathrm{~V}-0.7 \mathrm{~V}}{270 \Omega+470 \mathrm{~K} / 200}=\underline{\underline{7.36 \mathrm{~mA}}}$

The load line looks like this:

The overall bias is still not as stable as we can make it, however it is slightly better than base bias.
3. Design an emitter-feedback bias circuit to meet the following specifications:

$$
\begin{array}{lcc}
\mathrm{Rc}=4.7 \mathrm{~K} & \gamma=0.5 & \mathrm{VcC}=20 \mathrm{~V} \\
\beta_{\mathrm{DC}}=100 \text { to } 200 \text { (use geometric average) }
\end{array}
$$

Show all calculations and neatly draw the resulting circuit configuration.
Design steps:

1) $V_{C E}=\gamma V_{C C}=(0.5)(20 \mathrm{~V})=10 \mathrm{~V}$
2) $V_{E}=1 V$
3) $V_{C}=V_{E}+V_{C E}=1 \mathrm{~V}+10 \mathrm{~V}=11 \mathrm{~V}$
4) $I_{E} \approx I_{C}=\frac{V_{C C}-V_{C}}{R_{C}}=\frac{20 \mathrm{~V}-11 \mathrm{~V}}{4.7 \mathrm{~K}}=1.91 \mathrm{~mA}$
5) $R_{E}=\frac{V_{E}}{I_{E}}=\frac{1 \mathrm{~V}}{1.91 \mathrm{~mA}}=522.2 \Omega(\underline{\underline{560 \Omega}}$ standard)
6) $\hat{\beta}=\sqrt{\beta_{M I N} \beta_{M A X}}=\sqrt{(100)(200)}=141$

$$
R_{B}=\frac{V_{C C}-V_{B}}{I_{E} / \hat{\beta_{D C}}}=\frac{20 \mathrm{~V}-(1 \mathrm{~V}+0.7 \mathrm{~V})}{1.91 \mathrm{~mA} / 141}=1.348 \mathrm{M} \Omega(\underline{\underline{1.5} \mathrm{M} \Omega} \text { standard })
$$

The circuit looks like this:

4. Design an emitter-feedback bias circuit to meet the following specifications:

$$
\begin{array}{lcc}
\mathrm{Rc}=2.2 \mathrm{~K} & \gamma=0.3 \quad \mathrm{VCC}=30 \mathrm{~V} \\
\beta_{\mathrm{DC}}=150 \text { to } 300 \text { (use geometric average) }
\end{array}
$$

Show all calculations and neatly draw the resulting circuit configuration.
Design steps:

1) $V_{C E}=\gamma V_{C C}=(0.3)(30 \mathrm{~V})=9 \mathrm{~V}$
2) $V_{E}=1 \mathrm{~V}$
3) $V_{C}=V_{E}+V_{C E}=1 V+9 \mathrm{~V}=10 \mathrm{~V}$
4) $I_{E} \approx I_{C}=\frac{V_{C C}-V_{C}}{R_{C}}=\frac{30 \mathrm{~V}-10 \mathrm{~V}}{2.2 \mathrm{~K}}=9.09 \mathrm{~mA}$

5) $\hat{\beta}=\sqrt{\beta_{M I N} \beta_{M A X}}=\sqrt{(150)(300)}=212$

$$
R_{B}=\frac{V_{C C}-V_{B}}{I_{E} / \hat{\beta}_{D C}}=\frac{30 \mathrm{~V}-(1 V+0.7 \mathrm{~V})}{9.09 \mathrm{~mA} / 212}=659.956 \mathrm{~K} \Omega(\underline{\underline{680 \mathrm{~K} \Omega}} \text { standard })
$$

The circuit looks like this:

5. Design a collector-feedback bias circuit to meet the following specifications:

$$
\begin{array}{lcc}
\mathrm{RC}=1 \mathrm{~K} & \gamma=0.5 \quad \mathrm{VCC}=10 \mathrm{~V} \\
\beta_{\mathrm{DC}}=150 \text { to } 250 \text { (use geometric average) }
\end{array}
$$

Show all calculations and neatly draw the resulting circuit configuration. Verify the design using any method of your choice and document your results.

Design steps:

1) $\hat{\beta}=\sqrt{\beta_{M I N} \beta_{M A X}}=\sqrt{(150)(250)}=193.7$
2) $R_{B}=\hat{\beta} R_{C}=(193.7)(1 \mathrm{~K})=193.7 \mathrm{~K}$ (200K standard)

Circuit configuation:

Verification of design:
$I_{C}=\frac{V_{C C}-V_{B E}}{R_{C}+R_{B} / \beta_{D C}}=\frac{10 \mathrm{~V}-0.7 \mathrm{~V}}{1 K+200 \mathrm{~K} / 193.7}=4.57 \mathrm{~mA}$
$V_{C E}=V_{C}=V_{C C}-I_{C} R_{C}=10 \mathrm{~V}-(4.57 \mathrm{~mA})(1 \mathrm{~K})=5.42 \mathrm{~V}$
$\gamma=\frac{V_{C E}}{V_{C C}}=\frac{5.42 \mathrm{~V}}{10 \mathrm{~V}}=\underline{\underline{0.542}}$
(This verifies the proper placement of the Q-point, which was specified as 0.5)
6. Calculate the collector current and Gamma (γ) for the circuit below for $\beta_{D C}=100$ and 200. Draw the load line, showing the Q-point of the circuit. Comment on the circuit's stability; how does it compare with the circuits from problems 1 and 2?

The collector saturation current is:
$I_{C(S A T)}=\frac{V_{C C}}{R_{C}+R_{E}}=\frac{15 \mathrm{~V}}{2.2 K+330 \Omega}=5.93 \mathrm{~mA} \quad$ (This defines one end of the load line)
The cutoff voltage $\mathrm{V}_{\text {CE(OFF) }}$ is $\mathrm{V}_{\mathrm{CC}}(15 \mathrm{~V}) \quad$ (This defines the other end of the load line)
When $\beta=100$:
$R_{\text {IN }(\text { BASE })}=(\beta+1) R_{E}=(101)(330 \Omega)=33.33 \mathrm{~K}$ (This is the load on the voltage divider)
The base and emitter voltages are:
$V_{B}=V_{C C}\left(\frac{R 2 \| R_{I N(B A S E)}}{R 1+R 2 \| R_{I N(B A S E)}}\right)=15 V\left(\frac{5.6 K \| 33.33 K}{43 K+5.6 K \| 33.33 K}\right)=1.5 V$
$V_{E}=V_{B}-V_{B E}=1.5 \mathrm{~V}-0.7 \mathrm{~V}=0.8 \mathrm{~V}$
$I_{E}=\frac{V_{E}}{R_{E}}=\frac{0.8 \mathrm{~V}}{330 \Omega}=2.42 \mathrm{~mA}$
$V_{C}=V_{C C}-I_{C} R_{C}=15 \mathrm{~V}-(2.42 \mathrm{~mA})(2.2 \mathrm{~K})=9.66 \mathrm{~V}$
$\gamma=\frac{V_{C E}}{V_{C C}}=\frac{9.66 \mathrm{~V}-0.8 \mathrm{~V}}{15 \mathrm{~V}}=\underline{\underline{0.591}}$
(continued, next page)

When $\beta=200$:
$R_{I N(B A S E)}=(\beta+1) R_{E}=(201)(330 \Omega)=66.33 \mathrm{~K}$ (This is the load on the voltage divider)
The base and emitter voltages are:
$V_{B}=V_{C C}\left(\frac{R 2 \| R_{I N(B A S E)}}{R 1+R 2 \| R_{I N(B A S E)}}\right)=15 V\left(\frac{5.6 K \| 66.33 K}{43 K+5.6 K \| 66.33 K}\right)=1.6 \mathrm{~V}$
$V_{E}=V_{B}-V_{B E}=1.6 \mathrm{~V}-0.7 \mathrm{~V}=0.9 \mathrm{~V}$
$I_{E}=\frac{V_{E}}{R_{E}}=\frac{0.9 \mathrm{~V}}{330 \Omega}=2.73 \mathrm{~mA}$
$V_{C}=V_{C C}-I_{C} R_{C}=15 \mathrm{~V}-(2.73 \mathrm{~mA})(2.2 \mathrm{~K})=9 \mathrm{~V}$
$\gamma=\frac{V_{C E}}{V_{C C}}=\frac{9 \mathrm{~V}-0.8 \mathrm{~V}}{15 \mathrm{~V}}=\underline{\underline{0.547}}$
The load line with Q-points looks like this:

Comment: The circuit is much more stable. Even though $\beta_{D C}$ doubled in value, the collector current increased by only 0.31 mA (a 12.8% increase when compared to the original current of 2.42 mA).
7. Design a voltage-divider bias circuit to meet the following specifications:
$\mathrm{Rc}=10 \mathrm{~K}$
$\gamma=0.5$
$\mathrm{Vcc}=15 \mathrm{~V}$
$\beta_{D C}=150$ to 250

Show all calculations and neatly draw the resulting circuit configuration.
Design steps:

1) $V_{C E}=\gamma V_{C C}=(0.5)(15 \mathrm{~V})=7.5 \mathrm{~V}$
2) $V_{E}=1 \mathrm{~V}$
3) $V_{C}=V_{E}+V_{C E}=1 \mathrm{~V}+7.5 \mathrm{~V}=8.5 \mathrm{~V}$
4) $I_{E} \approx I_{C}=\frac{V_{C C}-V_{C}}{R_{C}}=\frac{15 \mathrm{~V}-8.5 \mathrm{~V}}{10 \mathrm{~K}}=0.65 \mathrm{~mA}$
5) $R_{E}=\frac{V_{E}}{I_{E}}=\frac{1 \mathrm{~V}}{0.65 \mathrm{~mA}}=1538 \Omega(\underline{\underline{1.5 \mathrm{~K} \Omega}}$ standard)
6) $I_{B}=\frac{I_{E}}{\left(\beta_{D C(M I N)}+1\right)}=\frac{0.65 \mathrm{~mA}}{(150+1)}=4.3 \mu \mathrm{~A}$

$$
I R_{2}=10 I_{B}
$$

$$
\begin{aligned}
& I R_{1}=11 I_{B} \\
& \text { 8) } \therefore R_{1}=\frac{\left(V_{C C}-V_{B}\right)}{11 I_{B}}=\frac{(15 \mathrm{~V}-1.7 \mathrm{~V})}{11(4.3 \mu \mathrm{~A})}=\underline{\underline{281.183 \mathrm{~K}}} \text { (R1=270K} \text { standard) }
\end{aligned}
$$

The circuit looks like this:

8. Design a voltage-divider bias circuit to meet the following specifications:
$\mathrm{Rc}=5.6 \mathrm{~K} \quad \gamma=0.3 \quad \mathrm{Vcc}=40 \mathrm{~V}$ $\beta_{D C}=100$ to 400

Show all calculations and neatly draw the resulting circuit configuration.
Design steps:

1) $V_{C E}=\gamma V_{C C}=(0.3)(40 \mathrm{~V})=12 \mathrm{~V}$
2) $V_{E}=1 V$
3) $V_{C}=V_{E}+V_{C E}=1 \mathrm{~V}+12 \mathrm{~V}=13 \mathrm{~V}$
4) $I_{E} \approx I_{C}=\frac{V_{C C}-V_{C}}{R_{C}}=\frac{40 \mathrm{~V}-13 \mathrm{~V}}{5.6 \mathrm{~K}}=4.82 \mathrm{~mA}$
5) $R_{E}=\frac{V_{E}}{I_{E}}=\frac{1 \mathrm{~V}}{4.82 \mathrm{~mA}}=207.4 \Omega(\underline{220 \Omega}$ standard $)$
6) $I_{B}=\frac{I_{E}}{\left(\beta_{D C(M I N)}+1\right)}=\frac{4.82 m A}{(100+1)}=47.73 \mu \mathrm{~A}$

$$
I R_{2}=10 I_{B}
$$

7) $\therefore R_{2}=\frac{V_{B}}{10 I_{B}}=\frac{1 V+0.7 \mathrm{~V}}{10(47.73 \mu \mathrm{~A})}=\underline{\underline{3.561 \mathrm{~K}}} \quad$ (R2=3.6K standard)

$$
\begin{aligned}
& I R_{1}=11 I_{B} \\
& \text { 8) } \\
& \therefore R_{1}=\frac{\left(V_{C C}-V_{B}\right)}{11 I_{B}}=\frac{(40 V-1.7 \mathrm{~V})}{11(47.73 \mu \mathrm{~A})}=\underline{\underline{72.937 \mathrm{~K}}} \text { (R1=75K} \text { standard) }
\end{aligned}
$$

The circuit looks like this:


```
Design verification by CESIM software (not
required of student)
Vcc =40.00 V olts, BetaDC = 100.00
RB1 = 75000.0 Ohms, RB2 = 3600.0 Ohms
RC = 5600.0
Re1 =220.0, Re2 = 0.0
DC Parameters:
VB=1.59 V olts, VE =0.89 V olts, VC = 17.65
Volts
IE = 4.03 mA,IC = 3.99 mA
Total DC Input Power = 179.99 mW
Device power dissipation PD =66.90 mW
```

