Fourier Analysis

INSTRUCTIONS: Solve for the requested quantities, showing all work (including defining equations). Use complete sentences to answer essay questions. <u>Box final answers</u>.

- 1. Define the following terms:
 - a) Periodic waveform
 - b) Fundamental
 - c) Harmonic
 - d) Period
 - e) Average
- 2. What is another name for the DC component of a waveform?
- 3. Define the terms time domain and frequency domain. What is the difference between these two domains?
- 4. What is a Fourier Series?
- 5. A certain waveform is described in the time-domain as follows:

 $f(t) = 25 e^{-25t} \sin(377 t)$

Why can't this waveform be expressed as a Fourier Series?

- 6. For the following sinusoidal waves, state the following information:
 - * The fundamental frequency in Hz and Rad/S
 - * The period in Seconds
 - * The peak value in Volts
 - * The RMS or effective value in Volts
 - a) $f(t) = 141 \sin (377t)$ b) $f(t) = 25 \cos(6283t + 20)$
 - c) $f(t) = .002 \sin(1 \times 10^6 t)$ d) $f(t) = 1000 \sin(50,000 t)$
- 7. What is meant by the term "odd function?" Give an example of one.
- 8. What is meant by the term "even function?" Give an example.
- 9. What is the difference between and "odd function" and an "odd-numbered harmonic" in a Fourier series?

10. For the waveforms below, determine whether they are odd, even, or asymmetrical functions.

11. For each waveform of problem 10, compute the following:

- * a0, the DC level (if found by inspection, state this).
- * The period T
- * The fundamental frequency f in Hz.
- * Whether even harmonics are present or not (half-wave mirror-image symmetry test)

12. For waveform (a) of problem 10, build a table with the following information:

- * N Harmonic Number
- * F Frequency of harmonic N
- * B_N Sine coefficient peak value
- * B_N RMS Sine coefficient RMS value

Provide enough entries to cover up to the 7th harmonic.

Use the "Sine Expansion" formula given on the handout sheet.

(Suggested Table Format)

Ν	F	B _N PEAK	B _N RMS
1			
2			
3			

- 13. From the table data of problem 12, sketch a spectrogram for the waveform of 10(a).
- 14. Sketch a spectrogram for waveforms 10(c) and 10(d) using the expansion formulas given on the handout sheet. The spectrograms should go up to the 7th harmonic.
- 15. Using the Fourier integral equations, <u>derive</u> the formula for a "sine expansion" of a square wave as shown on the handout sheet [same as waveform 10(a)].
- 16. Use the Fourier integral equations to solve for the coefficients of waveform 10(d). Show a table like that of problem 12 containing your results, going up to the 7th harmonic.