
A C++ Base64 Coder/Decoder Class 
 
Tom Wheeler, NØGSG 
twheeler@kc.devry.edu 
 
Introduction 
 
Often binary data must be transmitted on a communications channel that can only handle 
ASCII or text information. Binary data can have any value, but text channels can only 
handle printable character values and a small set of control characters (such as the carriage 
return). The traditional solution is to program the sender to encode the binary data into text 
characters which will then be interpreted at the receiver as binary data. Various schemes 
have been utilized over the years to accomplish this. 
 
Hexadecimal or Base16 cod ng and its variants (such as Intel hex) are still used to upload 
machine-language data directly to microprocessor and microcontrollers. Each transmitted 
character represents a group of four binary bits. For example, the group 

i

 
:10010000214601360121470136007EFE09D2190140 
 
is the Intel Hex representation of the 16-byte (1016 octet) data block 
{214601360121470136007EFE09D21901} starting at memory address 010016 and having an 
8-bit checksum of 4016. The ':' character is used for synchronization; it marks the beginning of 
the data record. 
 
Base16 coding is inherently inefficient - at best, it sends 8 bits to represent each 4-bit group; 
only 50% or less of the channel capacity is utilized. Base32 coding and Base64 coding are 
more efficient adaptations of this same idea. 
 
Base64 coding is extensively used in Internet and Web communications. It allows pure 
binary data to be sent over a "text only" channel. The "text only" channel is pretty much a 
modern relic; modern transport (OSI Layer IV) protocols such as TCP can easily handle 
binary data. The problem is that application protocols (OSI Layer VII+) such as HTTP (used 
for web transactions), SMTP (used for transferring e-mail), and others just weren't designed 
with binary data in mind. Base64 encoding allows these text-only protocols to handle any 
type of data. 
 
The Base64 system encodes groups of six data bits into each transmitted character symbol. 
At best, the efficiency is about 6/8 or 75%, which although better than the 50% figure for 
Base16, still leaves a bit to be desired. Table 1 shows the Base64 code set. 
 
 0 1 2 3 4 5 6 7 8 9 A B C D E F 
00 A B C D E F G H I J K L M N O P 
10 Q R S T U V W X Y Z a b c d e f 
20 g h i j k l m n o p q r s t u v 
30 w x y z 0 1 2 3 4 5 6 7 8 9 + / 
 

Table 1: Base 64 Code Set (Based on RFC3548; RFC4648) 



 
Encoding six bits at a time also introduces some clumsiness into the coding process, because 
transmitted bytes can span symbols. For example, the three character message "Man" (in 
ASCII) contains the code sequence { 0x4D, 0x61, 0x6E }. (The prefix "0x" indicates a 
hexadecimal or base 16 number). This message encodes quite easily: 
 
 
Text Character 'M' 'a' 'n' 
Hex ASCII Code 4D 61 6E 
Binary ASCII Code 0  1  0  0  1  1  0  1 0  1  1  0  0  0  0  1 0  1  1  0  1  1  1  0 
Base64 Grouping 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 1 0 1 1 1 0 
Base64 Symbol 'T' 'W' 'F' 'u' 
 
Table 2: Encoding the Text "Man" (Adapted from http://en.wikiped a.org/wiki/Base64)  i
 
This message encoded neatly because the number of bits within, 24, also happened to be an 
integer multiple of 6 (the quantum of Base64 encoding). Note that encoding utilizes 
spanning. A Base64 symbol maps to portions of two adjacent input bytes; this introduces 
positional sensitivity -- the same byte sequence may have different Base64 representations, 
based on its offset within the data stream. What if an extra byte is added to the message? 
Table 3 shows how this is handled. 
 
 

Text Character 'M' 'a' 'n' 'e' 
Hex ASCII Code 4D 61 6E 65 
Binary ASCII 
Code 

01001101 01100001 01101110   01100101 

Base64 Grouping 010011 010110 000101 101110 011001 010000 PAD PAD 
Base64 Symbol 'T' 'W' 'F' 'u' 'Z' 'Q' '=' '=' 

 
Table 3: Encoding Data w th Padding i

 
The addition of the fourth character complicated the encoding considerably! The message 
now has 30 bits (4 bytes at 8 bits/byte), and 30 isn't an integer multiple of the six-bit packets 
used by the encoder. To solve the problem, Base64 always encodes the message with a 
multiple of four symbols. The symbol sequence 'ZQ' encodes the final byte for the letter 'e'. 
Note that the 'Q' actually encodes only two of the bits in this final byte -- the remaining zero 
bits in 'Q' are padding.  
 
The '=' symbols at stream end are also padding -- they represent binary zeros to be appended 
to the recovered data, if needed. In this example, a single '=' would theoretically be an 
adequate way of padding and terminating the message, but the rules for Base64 encoding 
require that all messages contain an integer multiple of four symbols, so the second '=' is a 
requirement, even though it is redundant. 
 
Programmers have been known to pull hair out implementing coder/decoders (codecs) for 
systems like this. If you feel that this is unnecessarily complicated, you're probably right!



 
 
A Codec Class for Base64 
 

l :

The Base64Codec class is a simple and robust implementation of a Base64 coder and 
decoder. It contains two primary functional parts: 
 

• An encoder. The encoder is passed a set of binary data; this data is converted into 
ASCII Base64 symbols. The encoder also contains measures to prevent buffer 
overrun. 
 

• A decoder. The decoder tests the Base64 string for validity and decodes the string 
back into pure binary form. 

 
Two Visual C++ 6.0 projects, "Base64" and "Base64GUI" are on this web site for you to 
download. They contain the source code and executable modules to demonstrate 
functionality of the Base64Codec class. 
 
 
Simp e Code Example  Coding and Decoding a Message 
 
The following code is from the "Base64" project. It illustrates the simplicity of using the 
Base64Codec class. 
 
char Base64buf[1024]; // A buffer to hold the Base-64 encoded string 
int nResult;  // Result of the conversion (how many characters or bytes) 
Base64Codec aCodec; // Instantiate an instance of the codec 
char BinBuf[1024]; // Buffer for the recovered binary data 
 
char* testString; 
testString = "Wherever you go, there you are."; // Some ASCII data here 
 
 
printf("Test string: \"%s\" (len=%d)\n\n", testString, strlen(testString) ); 
 
// You can ask the codec how big the Base64 string will be. This is quite handy and 
// recommended if you plan on dynamically allocating buffer space. 
 
printf("The codec estimates that %d bytes are needed to encode this string.\n",  
   aCodec.EstimateBase64EncodeSize( strlen(testString)) ); 
 
// Do the actual encode here 
nResult = aCodec.Encode( Base64buf, 1023 , testString , strlen(testString) ); 
printf("\nResult Code: %2d characters in Base64 stream.\nOriginal Data: %-10s\nBase64 
Stream: %-10s\n\n", nResult, testString, Base64buf ); 
 
// Then decode it back into binary (ASCII here) 
nResult = aCodec.Decode(BinBuf,1023,Base64buf); 
printf("\n\nDecode: %2d bytes of data\n\n", nResult ); 
// Since we decoded as a string and didn't include the '\0' in the encode, put it on 
// the string here. (Alternately, could have passed (strlen(testString)+1) above. 
BinBuf[nResult]=0; 
printf("Decode as string: %s\n", BinBuf ); 



Benchmarks and Testing 
 
The Base64Codec class has been benchmarked and tested on a 2 GHz class Windows 2000 
desktop system. The testing process was as follows: 
 

• A group of 100 JPEG binary files varying in size from 100 kB to 40 MB each were fed 
into the encoder, and output as text files. 

• The resulting Base64 text files were then decoded back into binary and compared 
with the originals using the Windiff  file comparison utility provided with Visual 
C++. 

 
Even though the codec is a first pass attempt, it is very fast and robust. Coding a 40 MB 
JPEG data file and writing the Base64 data to disk required less than two seconds. Smaller 
files encoded much faster. The decoding process was of similar speed. No data errors were 
observed; all recovered binary files were identical to the original JPEG data (with the 
exception of the time stamps). 
 
Summary 
 
It's not hard to accomplish Base64 encoding and decoding within your own C++ programs. 
The Base64Codec class is a simple and efficient solution that is much better than pulling 
out your hair! 
 
 
 
 
 


	A C++ Base64 Coder/Decoder Class

