
CSIS 123 PROGRAMMING FUNDAMENTALS - PAGE 1

CSIS 123
LABORATORY EXPERIMENTS

The work in this laboratory reinforces the concepts covered in CSIS 123,
Programming Fundamentals. Each project teaches a new feature of the C++
language.

PROJECT DESCRIPTION
 1 FAMILIARIZATION

2 TEMPERATURE CONVERSIONS

3 FUNCTION APPLICATIONS
4 NUMBER SORT

5 ADDRESS BOOK
6 PERMANENT ADDRESS BOOK

LABORATORY REPORT CONTENTS

Every student will turn in a complete, individually written lab report for each
experiment performed in CSIS 123. The content of a formal laboratory report is
expected to be as follows. (If you need to deviate from this format, please check with
the instructor first.)

a) A COVER PAGE containing:

• Your name
• Your class and semester (CSIS 123 - - Spring 2011)
• Experiment Title
• INSTRUCTOR: TOM WHEELERe) Due Date of report (Week # or date given

in class)
• Operational sign-off blank
• Final sign-off blank.

HINT:

Make sure to have a completed cover page when you start each lab. No sign-off can
be given without a proper cover page. Make sure to have a completed cover page
when you start each lab. No sign-off can be given without a proper cover page.

A sign-off will be given only during the scheduled laboratory period. The sign-off
verifies that your program works correctly. No credit is given to any report lacking
a sign-off. You must present your program listing and demonstrate correct
operation to obtain a sign-off. Your name must be at the top of all program listings.

CSIS 123 PROGRAMMING FUNDAMENTALS - PAGE 2

LABORATORY REPORT CONTENTS (CONTINUED)

b) INTRODUCTION - The introduction provides written explanation of what the
experiment is designed to do (and what is expected as a learning outcome).

c) THEORY OF OPERATION - This section is a walk-through of the C++ code. The
primary intent of this section should be to give an overview of how the
program works. Do not document each line of code! Instead, document each
major activity your program takes as it completes its task.

d) PROGRAM LISTING - This will be a complete listing of the program. All code
must be properly commented: All methods/functions must have a comment
header giving the method name, purpose, parameter list, return value, and a
description of each parameter and return item value. Each major idea should
be commented, rather than individual instructions.

 e) CONCLUSION - This section provides a brief explanation of what can be
concluded from the activities of the experiment. It is not a summary. It must
be based on the information you've worked with during the experiment and it
may also comment on topics such as the efficiency/effectiveness of various
software methods used to achieve the experimental goals. It is also
appropriate to reflect on your own learning in this section.

Important: Remember that you are to be the author of all laboratory work;
refer to the MCC Academic Integrity policy in the online Student Handbook.
The laboratory reports are to be written by you. Do not just copy or paraphrase
the text from the laboratory instructions, laboratory example, or Internet. Do
not share your writing with other students. Do not "loan" your writing to a
fellow student to "help" them write a report. The written analysis must reflect
your ideas and interpretations.

CSIS 123 PROGRAMMING FUNDAMENTALS - PAGE 3

Course Policies

I. Lab Partners: There are no lab partners allowed in CSIS 123. Each project and its
written report are to be completed individually. You are responsible for adhering to
the College's code of academic conduct.

II. Handing Work In: All work should be given directly to the instructor.

III. Late Work: Laboratory reports are accepted up to one week late, with a 5 point
deduction in score for each day late. Reports more than one week late are assigned a
grade of zero.

IV. Lab Success Hints: The successful student will have worked through the
majority of the source code before entering lab. Laboratory time should be used to
proper advantage; this is the main time that the instructor will be available to assist
in troubleshooting and debugging, and it is the only time that sign-offs will be
available. Please plan your activities accordingly.

V. Plagiarism: Copying the work of another, and claiming it to be your own is
plagiarism. This includes (but is not limited to) copying others homework, copying
from a lab manual or textbook, or collusion. The minimum penalty for cheating in
any form is a grade of zero for the element involved; in some cases, failure of the
course and/or expulsion from the College will also result. All cases of misconduct
will be documented and forwarded to the College administration for disciplinary
consideration.

Please do not turn in any work that is not your own! If in doubt, ask the instructor.
Here are some ways to avoid any problems:

• Don't share your computer files (text, C/C++ source/object, etc) with anyone else.
• Don't share media (flash drives, CDs, net/cloud storage points) with other

students; it's too easy to get files mixed up.
• Don't copy answers from a neighbor. If you don't understand how to do it, ask!
• Decline any request from fellow students for a copy of your work. Anybody

needing this level of help should ask the instructor.

CSIS 123 PROGRAMMING FUNDAMENTALS - PAGE 4

GOOD DATA PROCESSING PROCEDURES

Computers will be used extensively in this lab. The student can expect to spend
many hours creating and updating C++ programs; loss of this data can be disastrous!
The following tips will help to minimize the chance of losing a project:

• Make frequent backups. These backups should be in at least two different

physical locations. FAILURE TO KEEP A BACKUP OF YOUR DATA IS NOT
AN EXCUSEABLE REASON FOR LATE OR MISSING WORK.

• Always keep schoolwork on two different media; even better, e-mail critical work

to yourself to maintain an archive copy. (Note that in industry, e-mail will
normally not be used to archive code due to its insecure nature.)

• Don't save your data to the hard disk on the workstation, except in an
emergency. The hard disks on lab workstations are periodically "cleansed" of any
extra information as part of a housekeeping program. (MCC Labs may be set up
with "Deep Freeze," which is a program that restores default computer settings
each time a user logs off - - so be aware that anything you save to the computer
may disappear once you log off the machine.)

• Write your name on removable media (such as USB flash drives). It's easy to
accidentally leave these behind in the lab. If your name is marked on the media,
it's much easier to return it to you.

• Don't share your computer with others, especially the one you're using to develop
code.

• Remember that at some time in the future, one or more of your C++ programs

may become dangerous to the general health and well being of your computer. An
errant C++ program can easily wipe a hard disk clean, and in some cases, can
damage the hardware. Be guided accordingly.

CSIS 123 PROGRAMMING FUNDAMENTALS - PAGE 5

PROGRAM DOCUMENTATION

Program documentation is information that is directed at a technical person who
may be required to maintain your code. Later, someone (possibly you!) will most
likely have to make corrections or additions to your program. The quality of
program documentation (and the basic structuring of your code) largely determines
how easy (or difficult) this task will be.

Documentation is generally done in at two forms. For involved projects, the
flowchart is an excellent method for capturing the train of events inside a program.
The flowchart gives a conceptual, "bird's eye" view of what is happening. Flowcharts
should avoid specific details such as "increment the R register" unless such detail is
necessary to understanding the overall action of the program. A more suitable
comment might be "Add $1.00 to account balance," since this directly states what the
desired effect is. In other words, flowcharts are more concerned with what is
happening rather than how the machine mechanically achieves it.

The second form of documentation is the program listing. The program listing is a
detailed explanation of the mechanics behind the execution of a task. It should be
appropriately and thoroughly commented. In C++ programs, blank lines should be
inserted to separate parts of a task that are logically separate, and indentation
should be used where appropriate. Consider the two pieces of code below:

// This poorly-styled code actually works!
int my_function(x,y)
int x,y;
{int alpha,z;alpha=0;
 for(z=1;z<10;z++) {alpha=alpha+particle(x,y*y,z);y--;}
return(alpha);}

This code will compile and execute just fine, but it's difficult for humans to
understand and maintain. The purpose of this code (and how it fits into the context
of the whole program) is impossible to determine by mere inspection. It would be
easier to understand if it were written like this:

//
// Function: int my_function(int x,int y)
//
// Inputs: integers x and y. x is the RMS mass of the particle and y
// is its current velocity in Kilometers/uS.
// Returns: an integer with an approximation of the decelaration of the
// particle in Kilometer/uS^2
//
// Errors: There are no error conditions possible for this function.
//
//

int my_function(int x,int y)
{
int alpha,z;

Note how the C++
comment character
sequence "//" makes a
nice "box" for the
function header!

CSIS 123 PROGRAMMING FUNDAMENTALS - PAGE 6

alpha=0; // initial acceleration is assumed to be zero.

/* Compute the approximate acceleration using BIG AL's iterative method.
 Reference: CAR AND DRIVER magazine, July 1990, pp 34-35. */

for(z=1;z<10;z++)
 {
 alpha=alpha+particle(x,y*y,z);
 }

return(alpha);
}

Note that every instruction in a program listing isn't necessarily commented.
Machine instructions, in and of themselves, are generally self-evident because of the
use of mnemonics. The documenting comments therefore serve to illuminate
individual ideas or concepts that are important for understanding how the machine
is accomplishing the task at hand.

Every function you define should have a header comment. This important field
describes what the function does, what inputs it uses, and what outputs it produces.
It should be written as if you were explaining how to use the function to another
programmer.

Appropriate placing of comments, program elements, and use of indentation all help
to make source code more easily understood.

PROJECT DESCRIPTIONS

For a program to be accepted, it must meet the minimum specifications for each
project. Extra functionality, as a function of your own creativity, is encouraged, as
long as it does not detract from the original purpose of the project (or make it
difficult to evaluate or analyze.)

In most cases, the inputs and outputs of the program will be specified. Your program
should have the exact inputs and outputs that we specify, otherwise it becomes
difficult for us to check your program's operation.

It's OK to mix C and C++ comment
styles, as long as you're consistent.
Note how each algorithm is
explained to the reader.

Consistent use of
indents improves
readability.

CSIS 123 PROGRAMMING FUNDAMENTALS - PAGE 7

PROJECT 1: FAMILIARIZATION

 This is an exercise to make sure you can use the editor and compiler. Below is a
"C" program. Use the editor to place it into a file called MyFirst.cpp, and then
compile it into a working program.

P.S: (Possible Scuttlebutt): There may be some errors in this program. Please fix
them before compiling!

*/ This is my first C++ program. It will print the

 message "Hello, World" and then print the sum and

 product of two and five. /*

#incude <stdio.h>

//
// main() -- entry point for the MyFirst application
//
//

void main()
{
int a,b;

a=5;

b==2

pantf("\nHello, World!\n\n);

printf("The sum of two and five is %d \n\n", a+b);

printf("The product of two and five is %d \n\n," a*b);

// End of program number 1
//
//

CSIS 123 PROGRAMMING FUNDAMENTALS - PAGE 8

PROJECT 2: TEMPERATURE CONVERSIONS

This program will produce a conversion chart to the user's specification for the three
major units of temperature measurement, Celsius, Kelvin, and Fahrenheit.

The program will begin by asking the user for the range of temperatures (starting
and ending temperatures) in degrees Fahrenheit. It will then produce a neatly
formatted table giving the Fahrenheit temperature and equivalent Celsius and
Kelvin temperatures for each point in the list. The table must look like this:

Starting Temperature: 74 F Ending Temperature: 80 F

 Degrees F Degrees C Degrees K
 --
 74 23.333 296.483
 75 23.888 297.039
 76 24.444 297.594
 77 25.000 298.150
 78 25.555 298.706
 79 26.111 299.261
 80 26.667 299.817

Formatted PRINTF statements will be used to force the decimal points to line up
within the table, and three digits will be displayed to the right of the decimal points
on the C and K columns. The F column will be computed and displayed as an
INTEGER result with 1-degree F "steps" between values.

PROGRAM INPUTS: Starting and ending temperatures, degrees F

PROGRAM OUTPUT: Correctly formatted table as above.

IMPORTANT INFORMATION:

• °C = (°F-32)*(5./9) , °K = °C + 273.15

• You should include the statement "#include <math.h>" at the start of your

program so that the compiler knows that the math functions are double-
precision.

CSIS 123 PROGRAMMING FUNDAMENTALS - PAGE 9

PROJECT 3: FUNCTION APPLICATIONS

By dividing a program's functionality into subroutines or functions, it becomes much
easier to program tasks. Often an algorithm will appear terribly complicated until
it's broken down into easier-to-digest parts. Your task in this project is to devise a
program that accomplishes a task using C++ functions.

1. The choice of task is totally up to you. Pick something that's interesting to you if

possible, and get instructor approval before proceeding.

2. Some program ideas that are suitable for this project include:

a) Build a simulator that rolls a pair of dice (using the rnd() function to generate
the random numbers), and allows the user to play a simple game based on the dice
roll or rolls.

b) Simulate the Tower of Hanoi problem (see the description in the textbook on
Page 261).

c) Devise a game simulation that depends on chance such as Craps or Blackjack.
Keep track of the user's bank account and winnings throughout the run.

d) Devise a simple Computer Aided Instruction (CAI) application as described in
the textbook on Page 265. Your CAI application should tell the user the
percentage of correct answers at the end of the program run.

e) Devise a application that plays a simulated game of football, baseball, or
another sport of your choice, and gives a play-by-play rundown on how each team
is scoring.

PROGRAM INPUTS: Determined by the task.

PROGRAM OUTPUT: Determined by the task.

DESIGN CRITERIA: The program must use a minimum of four different functions
to achieve its task. The program structure must utilize looping and decision making
based on the game state and user's inputs. (In other words, a program that simply
performs a single calculation and terminates is not sufficient.)

Be careful to keep the task as simple as possible when thinking about what you'll
simulate!

CSIS 123 PROGRAMMING FUNDAMENTALS - PAGE 10

PROJECT 4: NUMBER SORT

In this exercise, you will write a program that takes a list of 10 floating point
numbers, and sorts them into low-high or high-low order (end-user choice). The
program will then print the sorted list, and report the AVERAGE, MAXIMUM, and
MINIMUM values encountered in the list.

DESIGN CRITERIA: You must use a double array in this program to hold the
numbers; this array may not be global in scope. You must use three functions; one
to INPUT the values into the array, one to SORT the array (in desired order), and a
third to OUTPUT the sorted array. The array must be passed to the SORT, INPUT,
and OUTPUT functions by use of a pointer. This is a requirement for sign-off. The
SORT function you write should use a bubble-sort algorithm.

PROGRAM INPUT: The ten numbers to be sorted.

PROGRAM OUTPUT: The sorted list of elements, and the average, maximum, and
minimum element values.

TIP: If you look closely at the output of your sort routine, you'll see an easy way of
extracting the minimum and maximum values from the list.

CSIS 123 PROGRAMMING FUNDAMENTALS - PAGE 11

PROJECT 5: ADDRESS BOOK

In this exercise you'll design a simple address book application using C++ structures
to store the data. The book must hold 100 (or more) entries. The following
commands must be supported:

Add an entry to the address book
Browse the address book
Delete an entry from the address book
Search for an entry in book by any field of your choice

When it is launched, the program will present a menu with the above choices, and
will also display the number of entries in the book. The minimum fields for each
entry are as follows:

Name (Up to 64 characters)
Address (Up to 128 characters)
Telephone Number (Format checked by your program; (xxx)-xxx-xxxx)
Comment (Up to 128 characters)

DESIGN CRITERIA: The program must store the data in a C++ structure array.
This array may be a global variable on your program, or it may be dynamically
allocated in memory. Each major component in the program must be contained in a
separate function. Your main() function may contain a maximum of only 10 C++
statements. The program is not required to retain results between runs.

PROGRAM INPUT: Data and commands from the end user.

PROGRAM OUTPUT: Menus and information requested by the user.

TIPS:

• Use character arrays for all fields.
• Use gets() for all character-string input so that spaces are ignored.
• The program menu should be in a function called by main(), with each item on

the menu implemented as a sub function.
• Remember that strcmp() is case-sensitive. You will need to write a function to

convert all strings to upper case, or use strcmpi() instead. The library function
strncmp() can be used to look for partial matches during search, if desired.

CSIS 123 PROGRAMMING FUNDAMENTALS - PAGE 12

PROJECT 6: REFINED ADDRESS BOOK

In this final project you will continue development of the address book application
you developed in Project 5 to provide additional capabilities:

• The program will gain the ability to store its data to a disk file (serialization),
so that the data is not lost when the program ends.

• The program will also gain full sorting capability by exploiting the C++ qsort()
library function.

The addition of these two features will make the program an actual useful
application, instead of just a laboratory curiosity.

DESIGN CRITERIA: The program will use binary file I/O to directly write the data
in the structure array to the disk. To perform the sorting, the qsort() library
routine will be utilized.

PROGRAM INPUT: Data and commands from the end user.

PROGRAM OUTPUT: Menus and information requested by the user.

