ET263 Practice Test II

Instructions: There are 25 questions on this test. It is written in a style very similar to the REAL exam #2. Choose the best answer from among those given. Click the GRADE button on the bottom of the form when you want the exam graded.

Note: You can practice this test as many times as you desire; the system will cook you up a fresh batch of questions each time you access this page.

Your Name: @ 216.73.216.196

1. Why would a class C amplifier be an excellent choice for use as a modulator in a radio transmitter?

a) The class C amplifier generates very low levels of distortion
b) The class C amplifier can operate on very low supply voltages
c) The class C amplifier is very nonlinear -- a requirement for modulation
d) None of the above

2. Where would one expect to find an RF bypass capacitor connected within a radio transmitter?

a) Between the final PA stage and the antenna
b) Between the oscillator and buffer amplifier
c) Between a power supply line and ground
d) None of the above

3. A certain high-level transmitter produces 10 Watts of carrier power. How much power must the audio amplifier produce to 100% modulate this transmitter?

a) 2 Watts
b) 4 Watts
c) 8 Watts
d) 5 Watts
e) None of the above

4. Which of these is an important property for a modulator stage to have?

a) High voltage gain
b) High power gain
c) Low input-impedance
d) Non-linear transfer characteristic

5. Where does the modulation take place at in a high-level transmitter?

a) At the oscillator
b) At the final power amplifier
c) At the buffer amplifier
d) Before the final power amplifier

6. Where does the modulation take place at in a low-level transmitter?

a) At the oscillator
b) At the final power amplifier
c) At the buffer amplifier
d) Before the final power amplifier

7. What class of amplifier would be serve as a modulator?

a) Class A
b) Class B
c) Class C
d) None of the above

8. What is meant by the term "dead-keyed?"

a) The unmodulated condition; 0% modulation
b) 50% modulated
c) 100% modulated; maximum output power
d) None of the above

9. What type of oscillator is pictured above?

a) Colpitts
b) Hartley
c) Armstrong
d) Pierce
e) None of the above

10. Which of these devices would provide the most stable oscillation frequency?

a) An RC time-constant
b) An LC resonant circuit
c) A quartz crystal
d) A ceramic resonator

11. What type of oscillator is pictured above?

a) Colpitts
b) Hartley
c) Armstrong
d) Pierce
e) None of the above

12. A certain oscillator has an amplifier with a phase shift of 45 degrees. According to the Barkhausen criteria for oscillation, what phase shift in the FEEDBACK network would be necessary to cause oscillation?

a) 90 Degrees
b) -45 Degrees
c) 315 Degrees
d) (b) or (c)
e) None of the above

13. A certain crystal has the following characteristics: Ls=1 H, Cs=.001 pF, Rs = 150 Ohms, Cm = 5 pF. What is the series-resonant frequency of the unit?

a) 5.032921 MHz
b) 4.986123 MHz
c) 5.033424 MHz
d) None of the above

14. A certain crystal has the following characteristics: Ls=1 H, Cs=.001 pF, Rs = 150 Ohms, Cm = 5 pF. What is the parallel-resonant frequency of the unit?

a) 5.032921 MHz
b) 4.986123 MHz
c) 5.033424 MHz
d) None of the above

15. A certain crystal has the following characteristics: Ls=1 H, Cs=.001 pF, Rs = 150 Ohms, Cm = 5 pF. At parallel-resonance, what is the approximate terminal impedance of the unit?

a) 30 + j125 Ohms
b) 30 - j150 Ohms
c) 150 Ohms (Equal to Rs)
d) Infinity (Open Circuit)

16. A certain crystal has the following characteristics: Ls=1 H, Cs=.001 pF, Rs = 150 Ohms, Cm = 5 pF. At series-resonance, what is the approximate terminal impedance of the unit?

a) 30 + j125 Ohms
b) 30 - j150 Ohms
c) 150 Ohms (Equal to Rs)
d) Infinity (Open Circuit)

17. In a superhet receiver, the difference between the preselector and local oscillator frequencies should always be:

a) The IF frequency
b) The carrier frequency
c) One-half the local oscillator frequency
d) None of these

18. A superhet receiver is using high-side injection. The incoming RF signal has a carrier frequency of 560 KHz; the IF frequency is 455 KHz. What is the image frequency?

a) 1470 KHz
b) 1015 KHz
c) 1120 KHz
d) 1165 KHz
e) None of these

19. The two signal components that are produced in a diode-type AM detector circuit are:

a) The upper and lower sidebands
b) A DC level and the AC information signal
c) The carrier frequency and sidebands
d) None of these

20. The DC component from the AM detector is used for what purpose?

a) To reduce distortion in the audio amplifier
b) To prevent frequency drift in the local oscillator
c) To control the gain of the RF and IF stages (AGC)
d) None of the above

21. What section of a superheterodyne receiver is responsible for attenuation of the image frequency?

a) Detector
b) Preselector
c) Local Oscillator
d) None of these

22. A mixer has two frequencies being applied, 700 KHz and 1000 KHz. Which of these gives the ideal output frequencies?

a) 700 KHz, 1000 KHz
b) 700 KHz, 1000 KHz, 1700 KHz
c) 700 KHz, 1000 KHz, 1700 KHz, 300 KHz
d) None of these

23. Which section of a superhet receiver determines the receiver's bandwidth?

a) Detector
b) Preselector
c) IF Amplifier
d) None of these

24. What is meant by the term "low-side injection?"

a) The local oscillator operates with a large AC output signal
b) The IF amplifier uses negative-bias to produce AGC
c) The local oscillator operates above the frequency of the RF carrier
d) None of the above

25. A certain superhet receiver has a preselector bandwidth that averages 100 KHz, and an IF bandwidth of 10 KHz. What will the receiver's total bandwidth be?

a) 10 KHz
b) 110 KHz
c) 210 KHz
d) 150 KHz
e) None of these

Just a few of the reasons why we're here!


Press GRADE EXAM button to see how you did!

Grade Exam!